Crossed‐Coil Nuclear Magnetic Resonance Probe for High Sensitivity Low Temperature Measurements

1972 ◽  
Vol 43 (11) ◽  
pp. 1648-1650 ◽  
Author(s):  
L. E. Drain
2009 ◽  
Vol 80 (7) ◽  
pp. 073905 ◽  
Author(s):  
Jürgen Haase ◽  
Swee K. Goh ◽  
Thomas Meissner ◽  
Patricia L. Alireza ◽  
Damian Rybicki

2021 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Germana Landi ◽  
Fabiana Zama ◽  
Villiam Bortolotti

This paper is concerned with the reconstruction of relaxation time distributions in Nuclear Magnetic Resonance (NMR) relaxometry. This is a large-scale and ill-posed inverse problem with many potential applications in biology, medicine, chemistry, and other disciplines. However, the large amount of data and the consequently long inversion times, together with the high sensitivity of the solution to the value of the regularization parameter, still represent a major issue in the applicability of the NMR relaxometry. We present a method for two-dimensional data inversion (2DNMR) which combines Truncated Singular Value Decomposition and Tikhonov regularization in order to accelerate the inversion time and to reduce the sensitivity to the value of the regularization parameter. The Discrete Picard condition is used to jointly select the SVD truncation and Tikhonov regularization parameters. We evaluate the performance of the proposed method on both simulated and real NMR measurements.


1978 ◽  
Vol 56 (17) ◽  
pp. 2253-2258 ◽  
Author(s):  
Morley Brownstein ◽  
Ronald J Gillespie ◽  
John P. Krasznai

The reactions of IOF5 with SbF5 and with AsF5 have been investigated at low temperature by 19F nmr and Raman spectroscopy. It was found that SbF5 forms labile 1:1 and 2:1 complexes whereas AsF5 forms only a 1:1 complex. The IOF5 is bound through its oxygen atom to the Lewis acids AsF5, SbF5, or (SbF5)2.


Sign in / Sign up

Export Citation Format

Share Document