Momentum Distribution in the Ground State of the One‐Dimensional System of Impenetrable Bosons

1964 ◽  
Vol 5 (7) ◽  
pp. 930-943 ◽  
Author(s):  
A. Lenard
2002 ◽  
Vol 80 (6) ◽  
pp. 645-660 ◽  
Author(s):  
M Blasone ◽  
P Jizba

We quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. By using the Feynman–Hibbs method, the time-dependent quantum states of such a system are constructed entirely in the framework of the classical theory. The geometric phase is calculated and found to be proportional to the ground-state energy of the one-dimensional linear harmonic oscillator to which the two-dimensional system reduces under appropriate constraint. PACS Nos.: 03.65Ta, 03.65Vf, 03.65Ca, 03.65Fd


Author(s):  
Jakob E. Björnberg ◽  
Peter Mühlbacher ◽  
Bruno Nachtergaele ◽  
Daniel Ueltschi

AbstractWe consider quantum spins with $$S\ge 1$$ S ≥ 1 , and two-body interactions with $$O(2S+1)$$ O ( 2 S + 1 ) symmetry. We discuss the ground state phase diagram of the one-dimensional system. We give a rigorous proof of dimerization for an open region of the phase diagram, for S sufficiently large. We also prove the existence of a gap for excitations.


1998 ◽  
Vol 63 (6) ◽  
pp. 761-769 ◽  
Author(s):  
Roland Krämer ◽  
Arno F. Münster

We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.


2014 ◽  
Vol 31 (10) ◽  
pp. 2078-2087 ◽  
Author(s):  
Michael L. Larsen ◽  
Clarissa A. Briner ◽  
Philip Boehner

Abstract The spatial positions of individual aerosol particles, cloud droplets, or raindrops can be modeled as a point processes in three dimensions. Characterization of three-dimensional point processes often involves the calculation or estimation of the radial distribution function (RDF) and/or the pair-correlation function (PCF) for the system. Sampling these three-dimensional systems is often impractical, however, and, consequently, these three-dimensional systems are directly measured by probing the system along a one-dimensional transect through the volume (e.g., an aircraft-mounted cloud probe measuring a thin horizontal “skewer” through a cloud). The measured RDF and PCF of these one-dimensional transects are related to (but not, in general, equal to) the RDF/PCF of the intrinsic three-dimensional systems from which the sample was taken. Previous work examined the formal mathematical relationship between the statistics of the intrinsic three-dimensional system and the one-dimensional transect; this study extends the previous work within the context of realistic sampling variability. Natural sampling variability is found to constrain substantially the usefulness of applying previous theoretical relationships. Implications for future sampling strategies are discussed.


Fractals ◽  
1993 ◽  
Vol 01 (03) ◽  
pp. 405-415 ◽  
Author(s):  
S. HAVLIN ◽  
M. ARAUJO ◽  
H. LARRALDE ◽  
A. SHEHTER ◽  
H.E. STANLEY

We review recent developments in the study of the diffusion reaction system of the type A+B→C in which the reactants are initially separated. We consider the case where the A and B particles are initially placed uniformly in Euclidean space at x>0 and x<0 respectively. We find that whereas for d≥2 a single scaling exponent characterizes the width of the reaction zone, a multiscaling approach is needed to describe the one-dimensional system. We also present analytical and numerical results for the reaction rate on fractals and percolation systems.


Sign in / Sign up

Export Citation Format

Share Document