Theory of Ultrasonic Thermal Relaxation Times in Liquids

1957 ◽  
Vol 26 (3) ◽  
pp. 469-473 ◽  
Author(s):  
Theodore A. Litovitz
1993 ◽  
Vol 302 ◽  
Author(s):  
C Eiche ◽  
M Fiederle ◽  
J Weese ◽  
D Maier ◽  
D Ebling ◽  
...  

ABSTRACTImpedance or admittance spectroscopy has been shown to be a very convenient tool for the investigation of deep levels in semiconductor junctions. At constant temperature a frequency sweep is performed. After that the impedance signal is analysed by a regularization method based on Tikhonov regularization in order to obtain the thermal relaxation times of the deep levels present in the junction. The high resolution of the regularization method in comparison to conventional techniques is demonstrated using simulated data. The temperature dependence of the thermal relaxation times provides information about the properties of the deep levels such as activation energy or capture cross section. Two donor levels with activation energies dE1 =0.58 eV and dE2 =0.68 eV are observed in our detector diodes. It can be shown that the concentration of level 2 is increased after irradiation.


1954 ◽  
Vol 12 (4) ◽  
pp. 519-525 ◽  
Author(s):  
G. Chiarotti ◽  
G. Cristiani ◽  
L. Giulotto ◽  
G. Lanzi

2011 ◽  
Vol 464 ◽  
pp. 583-587
Author(s):  
Ying Ze Wang ◽  
Xin Nan Song

The thermal response for given micromachine with the boundary surface exposed to sudden temperature change is studied by deriving an analytical solution of the hyperbolic heat conduction equation. Using the obtained analytical expression, the temperature profiles at the outer surface and interior of the micro beam are evaluated for various thermal relaxation times. The behaviors of hyperbolic heat propagation in micro beam are analyzed and possible anomalies are discussed by comparing the thermal behaviors of Fourier heat conduction.


Sign in / Sign up

Export Citation Format

Share Document