scholarly journals Future Probes of the Neutron Star Equation of State Using X-ray Bursts

Author(s):  
Tod E. Strohmayer
Keyword(s):  
2019 ◽  
Vol 627 ◽  
pp. A141 ◽  
Author(s):  
N. A. Webb ◽  
D. Leahy ◽  
S. Guillot ◽  
N. Baillot d’Etivaux ◽  
D. Barret ◽  
...  

Context. Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well-constrained neutron star masses, which improve the determination of the radius via modelling of the X-ray waveform. Aims. We aim to find other millisecond pulsars that already have well-constrained mass and distance measurements that show pulsed thermal X-ray emission in order to obtain tight constraints on the neutron star equation of state. Methods. The millisecond pulsar PSR J1909–3744 has an accurately determined mass, M = 1.54 ± 0.03 M⊙ (1σ error) and distance, D = 1.07 ± 0.04 kpc. We analysed XMM-Newton data of this 2.95 ms pulsar to identify the nature of the X-ray emission. Results. We show that the X-ray emission from PSR J1909–3744 appears to be dominated by thermal emission from the polar cap. Only a single component model is required to fit the data. The black-body temperature of this emission is $ {kT}=0.26^{0.03}_{0.02} $ keV and we find a 0.2–10 keV un-absorbed flux of 1.1 × 10−14 erg cm−2 s−1 or an un-absorbed luminosity of 1.5 × 1030 erg s−1. Conclusion. Thanks to the previously determined mass and distance constraints of the neutron star PSR J1909–3744, and its predominantly thermal emission, deep observations of this object with future X-ray facilities should provide useful constraints on the neutron star equation of state.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041015
Author(s):  
John L. Friedman ◽  
Nikolaos Stergioulas

The first inspiral of two neutron stars observed in gravitational waves was remarkably close, allowing the kind of simultaneous gravitational wave and electromagnetic observation that had not been expected for several years. Their merger, followed by a gamma-ray burst and a kilonova, was observed across the spectral bands of electromagnetic telescopes. These GW and electromagnetic observations have led to dramatic advances in understanding short gamma-ray bursts; determining the origin of the heaviest elements; and determining the maximum mass of neutron stars. From the imprint of tides on the gravitational waveforms and from observations of X-ray binaries, one can extract the radius and deformability of inspiraling neutron stars. Together, the radius, maximum mass, and causality constrain the neutron-star equation of state, and future constraints can come from observations of post-merger oscillations. We selectively review these results, filling in some of the physics with derivations and estimates.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Akira Dohi ◽  
Masa-aki Hashimoto ◽  
Rio Yamada ◽  
Yasuhide Matsuo ◽  
Masayuki Y Fujimoto

Abstract We investigate X-ray bursts during the thermal evolution of an accreting neutron star that corresponds to the X-ray burster GS 1826$-$24. Physical quantities of the neutron star are included using an equation of state below and above the nuclear matter density. We adopt an equation of state and construct an approximate network that saves computational time and calculates nuclear energy generation rates accompanying the abundance evolutions. The mass and radius of the neutron star are found by solving the stellar evolution equations from the center to the surface; this involves necessary information such as the nuclear energy generation in accreting layers, heating from the crust, and neutrino emissions inside the stellar core. We reproduce the light curve and recurrence time of the X-ray burst from GS 1826$-$24 within the standard deviation of 1$\sigma$ for the assumed accretion rate, metallicity, and equation of state. It is concluded that the observed recurrence time is consistent with the theoretical model with metallicity of the initial CNO elements $Z_{\rm CNO} = 0.01$. We suggest that the nuclear reaction rates responsible for the $rp$-process should be examined in detail, because the rates may change the shape of the light curve and our conclusion.


2017 ◽  
Vol 13 (S337) ◽  
pp. 225-228
Author(s):  
Morgane Fortin

AbstractSimultaneous measurements of the radius and mass of neutron stars (NSs) are expected from the new generation of X-ray telescopes, potentially constraining the NS equation of state (EoS). However using ‘non-unified’ EoSs with the ones for the core and the crust not based on the same nuclear model can introduce an uncertainty on the radius as large as the precision expected from these instruments. I present two solutions to this problem: a large collection of unified EoSs and an approximate and yet precise approach that, with no need of a crust EoS, provides the relation between the NS mass and radius. I discuss correlations between the NS radius and nuclear parameters, possibly allowing to constrain the NS radius with experiments on Earth. Finally, I show that in spite of the observation of massive NSs, one can not exclude that hyperons appear at high densities in NSs due to the scarcity of the available experimental data.


2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


2019 ◽  
Vol 887 (1) ◽  
pp. L25 ◽  
Author(s):  
Slavko Bogdanov ◽  
Sebastien Guillot ◽  
Paul S. Ray ◽  
Michael T. Wolff ◽  
Deepto Chakrabarty ◽  
...  

2017 ◽  
Vol 13 (S337) ◽  
pp. 340-341
Author(s):  
Sebastien Guillot

AbstractThe nearest millisecond pulsar PSR J0437–4715 is the ideal target to constrain the dense matter equation of state using the lightcurve modelling method. Our analysis combining XMM-Newton, NuSTAR, and ROSAT observations removed ambiguities in the spectral modelling of the surface emission from PSR J0437–4715. Furthermore, the NuSTAR observation demonstrated that the non-thermal hard tail emission was pulsed at the pulsar spin period. These features are crucial to model the lightcurve and to measure the radius of the neutron star. This conference proceeding is based on the publication Guillot et al. (2016).


2019 ◽  
Vol 23 ◽  
pp. 100
Author(s):  
Ch. C. Moustakidis ◽  
M. C. Papazoglou

The gravitational radiation has been proposed a long time before, as an explana- tion for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars.


2008 ◽  
Author(s):  
P. G. Jonker ◽  
C. Bassa ◽  
Z. Wang ◽  
A. Cumming ◽  
V. M. Kaspi

Sign in / Sign up

Export Citation Format

Share Document