Constant-pressure and constant-surface tension simulations in dissipative particle dynamics

2005 ◽  
Vol 122 (12) ◽  
pp. 124901 ◽  
Author(s):  
Ask F. Jakobsen
2012 ◽  
Vol 11 (3) ◽  
pp. 709-725 ◽  
Author(s):  
Licui Chen ◽  
Lianghui Gao ◽  
Weihai Fang ◽  
Leonardo Golubovic

AbstractIn the present article, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter model, the affected membranes are strongly buckled, in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].


Author(s):  
Toru Yamada ◽  
Yutaka Asako ◽  
Mohammad Faghri ◽  
Bengt Sundén

The liquid flow in sub-micron channels is simulated using multi-body dissipative particle dynamics (MDPD) to study the effect of the surface tension between liquid and wall surface on the flow in sub-micon scale. The solution domain is considered to be two-dimensional, where DPD particles are randomly distributed. Periodic boundary condition is employed in the flow direction and the solid walls are created by distributing DPD particles in the additional layers on the top and bottom of the domain. The different surface tensions between liquid and wall surface are obtained by changing the interaction parameters between the liquid and wall DPD particles. The ratio of Capillary number (Ca) to Reynolds number (Re) is used to relate the DPD units to the physical units. The results are shown in the form of slip length and the effect of the surface tension on the liquid flow in sub-micron channels is discussed.


2005 ◽  
Vol 123 (14) ◽  
pp. 144102 ◽  
Author(s):  
S. Y. Trofimov ◽  
E. L. F. Nies ◽  
M. A. J. Michels

2019 ◽  
Author(s):  
Ting Liu ◽  
Anupam Mishra ◽  
Mohsen Torabi ◽  
Ahmed A. Hemeda ◽  
James Palko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document