cetyl trimethyl ammonium
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 63)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Aparna D Saraf ◽  
shweta sharma ◽  
Shilpee Sachar

This work reports the physicochemical behavior of antibiotic drug, cefixime (CEF) in presence of cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB), dodecyl ethyl dimethyl ammonium bromide, (DDAB),...


2021 ◽  
Author(s):  
Hesham Abduelah ◽  
Berihun Mamo Negash ◽  
Keong Boon Kim ◽  
Eswaran Padmanabhan ◽  
Muhammad Arif ◽  
...  

Abstract Shale reservoirs, despite having abundance in hydrocarbon storage, offer significant challenges in terms of understanding the pore-scale and reservoir-scale phenomenon. Typically, hydraulic fracturing treatment is implemented to improve hydrocarbon productivity through the injection of fracturing fluid to induce the breakdown of the formation to create fractures, hence allowing a flow conduit for hydrocarbon to be produced at a higher flow rate of oil and/or gas. In this work, molecular dynamics (MD) simulation using GROMACS were utilized to create a 3D model comprised of methane (CH4), surfactant and graphite. Surfactant, as represented by the cationic cetyl trimethyl ammonium bromide (CTAB) was added along with water to represent water-based visco-elastic surfactant (VES) as an additive to reduce the surface tension of hydrocarbon to shale (represented by graphene). A realistic molecular model was created to examine the interaction of CTAB towards the adsorption pattern of methane onto graphene, in order to reveal the displacement efficiency of methane after wettability modification due to the effect of surfactant on the graphene on a nanoscale. The findings suggest that addition of CTAB as surfactant may enhance the production of methane though the reduction of IFT and adsorption capability of methane to the wall of shale. The result yielded consistent trends, where methane's tendency to stick to the adsorption site (at approximately 1.5 nm from the center of the system) was reduced and more methane molecules were accumulated at the center of the pore space. This study has uncovered the adsorption process and the effect of CTAB in altering the sorption behavior of methane towards shale. This would contribute to the enhancement of long-term shale gas production by providing more information on salinity and pressure sensitivity, enabling extraction to be done at a lower cost.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanpaseuth Phouthavong ◽  
Supone Manakasettharn ◽  
Duangkamon Viboonratanasri ◽  
Siriwit Buajarern ◽  
Panida Prompinit ◽  
...  

AbstractIn this study, we customized magnetic sorbents by functionalizing silica coated magnetite with octadecyl(C18)silane (Fe3O4@SiO2@C18). This sorbent was intended for the determination of trace orthophosphate (o-PO43−) in unpolluted freshwater samples. The o-PO43− was transformed to phosphomolybdenum blue (PMB), a known polyoxometalate ion. Then the PMB were coupled with cetyl trimethyl ammonium bromide (CTAB), cationic surfactant, in order to hydrophobically bound with the Fe3O4@SiO2@C18 particles through dispersive magnetic solid-phase extraction (d-MSPE) as part of sample preconcentration. The PMB–CTAB–magnetic particles are simply separated from the aqueous solution by the external magnet. The acidified ethanol 0.5 mL was used as PMB-CTAB eluent to produce an intense blue solution, which the absorbance was measured using a UV–Vis spectrophotometer at 800 nm. The proposed method (employing 2 mg of Fe3O4@SiO2@C18) yielded an enhancement factor of 32 with a linear range of 1.0–30.0 µg P L−1. Precision at 6.0 µg P L−1 and 25.0 µg P L−1 were 3.70 and 2.49% (RSD, n = 6) respectively. The lower detection limit of 0.3 µg P L−1 and quantification limit of 1.0 µg P L−1 allowed trace levels analysis of o-PO43− in samples. The reliability and accuracy of the proposed method were confirmed by using a certified reference material. Our method offers highly sensitive detection of o-PO43− with simple procedures that can be operated at room temperature and short analysis time.


2021 ◽  
Author(s):  
Ling-Yu Wang ◽  
Xue Li ◽  
Kun Luo ◽  
Yu-Hao Song ◽  
Ren-Guo Liu

Abstract In this study, cationic polyacrylamide (CPAM) modified diatomite and cetyl trimethyl ammonium bromide (CTAB) modified diatomite were synthesized and used as conditioner in sewage sludge dewatering. The effects of these two types of modified diatomite on the dewaterability and settling performance of activated sludge were studied. The mechanism of the two types of modified diatomite in the activated sludge system was elucidated. The efficiency of CPAM-modified diatomite was better than that of CTAB-modified diatomite in improving the settleability and dewaterability performance of sludge. The results indicated that specific resistance to filtration (SRF) was decreased from 8.52×1012m/Kg to 0.92×1012 m/Kg, and the water content in the remaining sludge cake after pumping filtration was decreased from 92.2% to 68.1%. by adding 0.4% of CPAM-modified diatomite and pH=3.5, which result in optimal sludge settling of activated sludge. Further studies showed that the polymer/surfactant adsorbed in diatomite increased sludge dewaterability and improved the sedimentation rate as a result of stripping extracellular polymer substances (EPS) and damaging the internal structure of sludge conduce bound water releasing. According to scanning electron microscope(SEM) images, two types of modified diatomite powder not only kept the porous, but also shown more complete and uniform structure in comparison to nature diatomite.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6035
Author(s):  
Lidia Favier ◽  
Amalia Maria Sescu ◽  
Elaziouti Abdelkader ◽  
Laurence Oughebbi Berthou ◽  
Doina Lutic

Mesoporous TiO2 photocatalysts intended for the advanced removal of clofibric acid (CA) from water were synthesized by the sol-gel method in a medium containing cetyl-trimethyl-ammonium bromide (CTAB) and urea, using either ethanol or isopropanol to dilute the TiO2 precursor. The activation of the samples was undertaken at 550, 650 and 750 °C. The XRD revealed that the nature of the solvent resulted in significant differences in the anatase-to-rutile ratios obtained at different temperatures. The specific surface area values were situated between 9 and 43 m2g−1 and the band gap values were similar for all the samples. The photocatalytic activity of the prepared samples was examined for the degradation of CA, an emergent water contaminant. The photocatalytic tests performed under UV-A irradiation revealed that the photo-reactivity of these materials depends on the calcination temperature. The best results were obtained for the samples calcined at 750 °C, which showed high yields of CA elimination, as well as almost complete mineralization (over 95%) after 180 min of reaction. Good results in terms of catalyst reusability in the reaction were found for the catalyst showing the highest photo-reactivity. Therefore, the samples can be considered good candidates for future water remediation applications.


2021 ◽  
Vol 58 (5) ◽  
pp. 383-393
Author(s):  
Maozhang Tian ◽  
Fan Zhang ◽  
Lu Wang ◽  
Xing Dong ◽  
Lifei Zhang ◽  
...  

Abstract In this study, we observed the activity of polyphenoloxidase (PPO) in red Fuji apples in the presence of single-chained surfactants (including cetyl trimethyl ammonium bromide (CTAB), and dodecyl trimethyl ammonium bromide (DTAB)) and gemini surfactants (pentamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), octamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide, dodecamethylene-α,ω-bis(dodecyl dimethyl ammonium bromide), pentamethylene-α,ω-bis(cetyl dimethyl ammonium bromide), and octamethylene-α,ω-bis(cetyl dimethyl ammonium bromide)). It was found that all these surfactants enhanced the activity of PPO in a wide range of temperature at low content. When PPO was denatured by incubating at high temperature, the surfactants caused reactivation of PPO. Compared to the single-chained surfactants, the gemini surfactants increased PPO activity at a much lower concentration. Moreover, the single-chained surfactant and the gemini surfactant acted together to further increase PPO activity, and the synergistic effect reduced the amount of surfactant used. In addition, the Michaelis-Menten constant for PPO did not change in the presence of the surfactants, suggesting the active site should remain well with the surfactants.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2629
Author(s):  
Pui May Chou ◽  
Poi Sim Khiew ◽  
Paul D Brown ◽  
Binjie Hu

Poly(N-isopropylacrylamide) (polyNIPAm) microspheres were synthesized via the suspension polymerization technique. Thermal and redox initiators were compared for the polymerization, in order to study the effect of initiator type on the surface charge and particle size of polyNIPAm microspheres. The successful polymerization of NIPAm was confirmed by FTIR analysis. Microspheres of diameter >50 µm were synthesized when a pair of ammonium persulfate (APS) and N,N,N’,N’-tetramethylene-diamine (TEMED) redox initiators was used, whilst relatively small microspheres of ~1 µm diameter were produced using an Azobis-isobutyronitrile (AIBN) thermal initiator. Hence, suspension polymerization using a redox initiator pair was found to be more appropriate for the synthesis of polyNIPAm microspheres of a size suitable for human embryonic kidney (HEK) cell culturing. However, the zeta potential of polyNIPAm microspheres prepared using an APS/TEMED redox initiator was significantly more negative than AIBN thermal initiator prepared microspheres and acted to inhibit cell attachment. Conversely, strong cell attachment was observed in the case of polyNIPAm microspheres of diameter ~90 µm, prepared using an APS/TEMED redox initiator in the presence of a cetyl trimethyl ammonium bromide (CTAB) cationic surfactant; demonstrating that surface charge modified polyNIPAm microspheres have great potential for use in cell culturing.


Sign in / Sign up

Export Citation Format

Share Document