scholarly journals Exact analytical solution to the relativistic Klein-Gordon equation with noncentral equal scalar and vector potentials

2006 ◽  
Vol 47 (8) ◽  
pp. 082302 ◽  
Author(s):  
F. Yasuk ◽  
A. Durmus ◽  
I. Boztosun
2008 ◽  
Vol 23 (35) ◽  
pp. 3005-3013 ◽  
Author(s):  
A. REZAEI AKBARIEH ◽  
H. MOTAVALI

The exact solutions of the one-dimensional Klein–Gordon equation for the Rosen–Morse type potential with equal scalar and vector potentials are presented. First, we briefly review Nikiforov–Uvarov mathematical method. Using this method, wave functions and corresponding exact energy equation are obtained for the s-wave bound state. It has been shown that the results for Rosen–Morse type potentials reduce to the standard Rosen–Morse well and Eckart potentials in the special case. The PT-symmetry for these potentials is also considered.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050015 ◽  
Author(s):  
Abdelmadjid Maireche

The Klein–Gordon equation with equal scalar and vector potentials [Formula: see text] describing the dynamics of a three-dimensional under the modified Coulomb plus inverse-square potential is considered, in the symmetries of noncommutative quantum mechanics (NCQM), using Bopp’s shift method. The new energy of [Formula: see text]th excited state [Formula: see text] is obtained as a function of the shift energy [Formula: see text] and [Formula: see text] is obtained via first-order perturbation theory in the three-dimensional noncommutative real space (NC: 3D-RS) symmetries instead of solving modified Klein–Gordon equation (MKGE) with the Weyl–Moyal star product. It is found that the perturbative solutions of discrete spectrum depended by the Gamma function, the discreet atomic quantum numbers [Formula: see text] and the potential parameters (A and B), in addition to noncommutativity parameters ([Formula: see text] and [Formula: see text]), which are induced with the effect of (space–space) noncommutativity properties.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Nasser Saad ◽  
Richard Hall ◽  
Hakan Ciftci

AbstractWe apply the Asymptotic Iteration Method to obtain the bound-state energy spectrum for the d-dimensional Klein-Gordon equation with scalar S(r) and vector potentials V(r). When S(r) and V(r) are both Coulombic, we obtain all the exact solutions; when the potentials are both of Kratzer type, we obtain all the exact solutions for S(r) = V(r); if S(r) > V(r) we obtain exact solutions under certain constraints on the potential parameters: in this case, a possible general solution is found in terms of a monic polynomial, whose coefficients form a set of elementary symmetric polynomials.


Sign in / Sign up

Export Citation Format

Share Document