Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy

2006 ◽  
Vol 89 (6) ◽  
pp. 061102 ◽  
Author(s):  
Tao Huang ◽  
Shuangli Dong ◽  
Xujin Guo ◽  
Liantuan Xiao ◽  
Suotang Jia
2020 ◽  
Vol 10 (6) ◽  
pp. 1930
Author(s):  
Chengkun Fu ◽  
Huaibin Zheng ◽  
Gao Wang ◽  
Yu Zhou ◽  
Hui Chen ◽  
...  

Three-dimensional (3D) imaging under the condition of weak light and low signal-to-noise ratio is a challenging task. In this paper, a 3D imaging scheme based on time-correlated single-photon counting technology is proposed and demonstrated. The 3D imaging scheme, which is composed of a pulsed laser, a scanning mirror, single-photon detectors, and a time-correlated single-photon counting module, employs time-correlated single-photon counting technology for 3D LiDAR (Light Detection and Ranging). Aided by the range-gated technology, experiments show that the proposed scheme can image the object when the signal-to-noise ratio is decreased to −13 dB and improve the structural similarity index of imaging results by 10 times. Then we prove the proposed scheme can image the object in three dimensions with a lateral imaging resolution of 512 × 512 and an axial resolution of 4.2 mm in 6.7 s. At last, a high-resolution 3D reconstruction of an object is also achieved by using the photometric stereo algorithm.


2014 ◽  
Vol 26 (15) ◽  
pp. 1495-1498 ◽  
Author(s):  
Zeyu Bao ◽  
Zhaohui Li ◽  
Yafan Shi ◽  
E. Wu ◽  
Guang Wu ◽  
...  

2013 ◽  
Vol 52 (2) ◽  
pp. 274 ◽  
Author(s):  
Zijing Zhang ◽  
Long Wu ◽  
Yong Zhang ◽  
Yuan Zhao

2020 ◽  
Author(s):  
Brian Redman

This paper is a follow-up to two previous papers, one introducing the new bitstream Photon Counting Chirped Amplitude Modulation (AM) Lidar (PC-CAML) with the unipolar Digital Logic Local Oscillator (DLLO) concept, and the other paper introducing the improvement thereof using the bipolar DLLO. In that previous work, there was only a single channel of digital mixing of the DLLO with the received photon counting signal. This paper introduces a new bitstream PC-CAML receiver architecture with an in-phase (I) digital mixing channel and a quadrature phase (Q) digital mixing channel for digital I/Q demodulation with the bipolar DLLO to improve the signal-to-noise ratio (SNR) by 3 dB compared to that for the single digital mixing channel with the bipolar DLLO and by 5.5 dB compared to that for the single digital mixing channel with the unipolar DLLO. (patent pending) The bipolar DLLO with digital I/Q demodulation architecture discussed in this paper retains the key advantages of the previous bitstream PC-CAML with a DLLO systems since it also replaces bulky, power-hungry, and expensive wideband RF analog electronics with digital components that can be implemented in inexpensive silicon complementary metal-oxide-semiconductor (CMOS) read-out integrated circuits (ROICs) to make the bitstream PC-CAML with a DLLO more suitable for compact lidar-on-a-chip systems and lidar array receivers than previous PC-CAML systems. This paper introduces the bipolar DLLO with digital I/Q demodulation receiver architecture for bitstream PC-CAML and presents the initial signal-to-noise ratio (SNR) theory with comparisons to Monte Carlo simulation results.


Sign in / Sign up

Export Citation Format

Share Document