scholarly journals Imaging of high-speed dust particle trajectories on NSTX

2006 ◽  
Vol 77 (10) ◽  
pp. 10E526 ◽  
Author(s):  
A. L. Roquemore ◽  
W. Davis ◽  
R. Kaita ◽  
C. H. Skinner ◽  
R. Maqueda ◽  
...  
1981 ◽  
Vol 59 (10) ◽  
pp. 1380-1390 ◽  
Author(s):  
J. M. Dewey ◽  
D. J. McMillin

High speed photogrammetry has been used to measure the particle trajectories in the flows resulting from the interaction of two identical explosively produced spherical shock waves. It is postulated that the interaction simulated the reflection of a spherical shock from an ideal nonenergy-absorbing surface. The "ideal" reflections were compared with reflections from two types of ground surface. From the observed particle trajectories the particle velocities, gas densities, and hydrostatic, dynamic, and total pressures in the complex air flows behind the shock interactions have been computed. These flows are described as two dimensional fields at fixed times and as time histories at fixed locations. The Mach stem shocks at the ground surfaces were weaker than those at corresponding positions near the interaction planes, but the magnitudes of the flow properties in these waves decreased more slowly and, at later times, became greater than those in the waves at the interaction planes. Computed pressure–time histories were compared to measurements made using electronic transducers and good agreement was found.


2007 ◽  
Vol 363-365 ◽  
pp. 222-226 ◽  
Author(s):  
A.L. Roquemore ◽  
N. Nishino ◽  
C.H. Skinner ◽  
C. Bush ◽  
R. Kaita ◽  
...  

1991 ◽  
Vol 18 (2) ◽  
pp. 273-276 ◽  
Author(s):  
H. Kochan ◽  
W. J. Markiewicz ◽  
H. U. Keller

Author(s):  
Iman Goldasteh ◽  
Goodarz Ahmadi ◽  
Andrea Ferro

Particle resuspension from flooring in connection with increased indoor air pollution was studied. Earlier efforts hypothesized that during the gait cycle, high speed airflow is generated at the floor level that would lead to particle resuspension. The details of the mechanism of the particle resuspension, however, are not well understood. Earlier models were mainly developed for spherical particle detachment from smooth surfaces, but in reality, dust particles are irregular in shape and have a wide size distribution. The resuspension of dust particles thus depends on their shape and size and the nature of their contact with the surface. In this work, a wind tunnel study of dust particle resuspension from common flooring was performed and the critical air velocities for particle detachment were measured. The main goal of the present experimental work is to understand the main mechanism of dust particle resuspension under real conditions by systematically investigating a range of airflow speeds. The other goal of the study is to provide information on the role of the airflow on dust particle detachment from common floorings.


1976 ◽  
Vol 13 (10) ◽  
pp. 786-791 ◽  
Author(s):  
W. B. Clevenger ◽  
W. Tabakoff

Author(s):  
Adel Ghenaiet

This paper presents the numerical results of sand particle trajectories and erosion patterns in a single stage axial fan used in industrial air ventilation, and the subsequent deterioration of the blade geometry. Attention is focused in particular on the effects of rotor blade staggering and the operating flow rates. By adopting the Lagrangian formulation to study the dynamics of particulate air-flow, the flow-field within the blade passage is solved separately. Particle trajectories computation is based on a stochastic tracking algorithm, which includes eddy-lifetime concept for turbulence, and accounts for the complex flow patterns near walls, random particle rebound factors, in addition to particle size, shape and fragmentation. The equations of motion are solved in a stepwise manner, whereas, particle tracking in different cells of the computational domain is based on the finite element method. The computation of the particle trajectories yields the impact locations along the blade surfaces, where the corresponding erosion patterns are calculated by using experimental correlations. The results of the numerical simulations carried out at low and high concentrations of MIL-E5007E sand particles, for different fan blade staggering and mass flow rates, revealed that the main impacted areas are found along the blade leading edge, over a strip of the blade suction side and a large area of the pressure side, in addition to the tip and casing, but with rare impacts on the hub. The rates of erosion in this axial fan are found to depend strongly on the air flow condition and the blade staggering. In all operating conditions of this axial fan, the rates of erosion are lower in comparison to high speed fans and compressors. Erosion analysis could be used in aerodynamic and mechanical design procedures to produce turbomachinery blading that would be less susceptible to erosion.


Sign in / Sign up

Export Citation Format

Share Document