scholarly journals Thermal and elastic properties of Cu–Zr–Be bulk metallic glass forming alloys

2007 ◽  
Vol 90 (21) ◽  
pp. 211901 ◽  
Author(s):  
Gang Duan ◽  
Mary Laura Lind ◽  
Katrien De Blauwe ◽  
Aaron Wiest ◽  
William L. Johnson
2006 ◽  
Vol 89 (24) ◽  
pp. 241917 ◽  
Author(s):  
G. J. Fan ◽  
M. Freels ◽  
H. Choo ◽  
P. K. Liaw ◽  
J. J. Z. Li ◽  
...  

2001 ◽  
Vol 16 (6) ◽  
pp. 1675-1679 ◽  
Author(s):  
Yong Zhang ◽  
D. Q. Zhao ◽  
B. C. Wei ◽  
P. Wen ◽  
M. X. Pan ◽  
...  

Zr/Nb-based bulk metallic glass (BMG) with a composition of Zr48Nb8Fe8Cu12Be24 was formed in cylindrical shapes 8 mm in diameter by the quartz tube water quenching method. The formation and acoustic, thermal, mechanical, and elastic properties of the BMG were investigated. The BMG exhibited excellent glass-forming ability, high thermal stability, and excellent mechanical properties.


1996 ◽  
Vol 455 ◽  
Author(s):  
Ralf Busch ◽  
Andreas Masuhr ◽  
Eric Bakke ◽  
William L. Johnson

ABSTRACTThe viscosities of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 and the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass forming liquids was determined from the melting point down to the glass transition in the entire temperature range of the supercooled liquid. The temperature dependence of the viscosity in the supercooled liquid obeys the Vogel-Fulcher-Tammann (VFT) relation. The fragility index D is about 20 for both alloys and the ratio between glass transition temperature and VFT temperature is found to be 1.5. A comparison with other glass forming systems shows that these bulk metallic glass formers are strong liquids comparable to sodium silicate glass. Furthermore, they are the strongest among metallic glass forming liquids. This behavior is a main contributing factor to the glass forming ability since it implicates a higher viscosity from the melting point down to the glass transition compared to other metallic liquids. Thus, the kinetics in the supercooled liquid is sluggish and yields a low critical cooling rate for glass formation. The relaxation behavior in the glass transition region of the alloys is consistent with their strong glassy nature as reflected by a stretching exponent that is close to 0.8. The microscopic origin of the strong liquid behavior of bulk metallic glass formers is discussed.


2014 ◽  
Vol 105 (20) ◽  
pp. 201906 ◽  
Author(s):  
Si Lan ◽  
Xiaoya Wei ◽  
Jie Zhou ◽  
Zhaoping Lu ◽  
Xuelian Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document