Variational Calculations for the Nuclear Equation of State toward Supernova Simulations

2008 ◽  
Author(s):  
H. Kanzawa ◽  
K. Oyamatsu ◽  
K. Sumiyoshi ◽  
M. Takano ◽  
Takuma Suda ◽  
...  
2014 ◽  
Vol 29 ◽  
pp. 1460221 ◽  
Author(s):  
Hajime Togashi ◽  
Masatoshi Takano ◽  
Kohsuke Sumiyoshi ◽  
Ken'ichiro Nakazato

We report on an equation of state (EOS) of hot asymmetric nuclear matter constructed using the variational method and its application to hydrodynamic simulations of core-collapse supernovae. This nuclear EOS is based on the AV18 two-body potential and UIX three-body potential, and the energy per nucleon at zero temperature is constructed with the cluster variational method. At finite temperatures, the free energies per nucleon are calculated with an extension of the variational method devised by Schmidt and Pandharipande. This EOS is in good agreement with that by the Fermi hypernetted chain variational calculations at zero and finite temperatures, and the structure of neutron stars calculated with this EOS is consistent with recent observational data. Using this nuclear EOS, we perform a spherically symmetric general-relativistic adiabatic simulation of the SN explosion. The explosion energy calculated with our EOS in the present simulation is larger than that obtained with the Shen EOS, implying that the variational EOS is softer than the Shen EOS.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1406
Author(s):  
Rémi Bougault ◽  
Bernard Borderie ◽  
Abdelouahad Chbihi ◽  
Quentin Fable ◽  
John David Frankland ◽  
...  

Correlations and clustering are of great importance in the study of the Nuclear Equation of State. Information on these items/aspects can be obtained using heavy-ion reactions which are described by dynamical theories. We propose a dataset that will be useful for improving the description of light cluster production in transport model approaches. The dataset combines published and new data and is presented in a form that allows direct comparison of the experiment with theoretical predictions. The dataset is ranging in bombarding energy from 32 to 1930 A MeV. In constructing this dataset, we put in evidence the existence of a change in the light cluster production mechanism that corresponds to a peak in deuteron production.


1995 ◽  
Vol 583 ◽  
pp. 599-606 ◽  
Author(s):  
M. Baldo ◽  
G. Giansiracusa ◽  
U. Lombardo ◽  
I. Bombaci ◽  
L.S. Ferreira

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


1986 ◽  
Vol 447 ◽  
pp. 13-26 ◽  
Author(s):  
Joseph J. Molitoris ◽  
Detlev Hahn ◽  
Horst Stocker

Author(s):  
G. D. Westfall ◽  
D. A. Cebra ◽  
J. Clayton ◽  
P. Danielewizc ◽  
S. Howden ◽  
...  

2020 ◽  
Vol 13 ◽  
pp. 203
Author(s):  
T. Gaitanos ◽  
M. Colonna ◽  
M. Di Toro ◽  
H. H. Wolter

We present several possibilities offered by the dynamics of intermediate energy heavy ion collisions to investigate the nuclear matter equation of state (EoS) beyond the ground state. In particular the relation between the reaction dynamics and the high density nuclear EoS is discussed by comparing theoretical results with experiments.


Sign in / Sign up

Export Citation Format

Share Document