Oxygen Isotopic Evolution in the Early Solar Nebula: Validation of the H[sub 2]O Transport Model

2008 ◽  
Author(s):  
Takashi Fukui ◽  
Kiyoshi Kuramoto ◽  
Takuma Suda ◽  
Takaya Nozawa ◽  
Akira Ohnishi ◽  
...  
2000 ◽  
Vol 38 (4) ◽  
pp. 491-512 ◽  
Author(s):  
John T. Wasson

2020 ◽  
Vol 105 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
George R. Rossman

Abstract Machiite (IMA 2016-067), Al2Ti3O9, is a new mineral that occurs as a single euhedral crystal, 4.4 μm in size, in contact with an euhedral corundum grain, 12 μm in size, in a matrix of the Murchison CM2 carbonaceous chondrite. The mean chemical composition of holotype machiite by electron probe microanalysis is (wt%) TiO2 59.75, Al2O3 15.97, Sc2O3 10.29, ZrO2 9.18, Y2O3 2.86, FeO 1.09, CaO 0.44, SiO2 0.20, MgO 0.10, total 99.87, giving rise to an empirical formula (based on 9 oxygen atoms pfu) of (Al1.17Sc0.56Y0.10Ti0.084+Fe0.06Ca0.03Mg0.01)(Ti2.714+Zr0.28Si0.01)O9. The general formula is (Al,Sc)2(Ti4+,Zr)3O9. The end-member formula is Al2Ti3O9. Machiite has the C2/c schreyerite-type structure with a = 17.10 Å, b = 5.03 Å, c = 7.06 Å, β = 107°, V = 581 Å3, and Z = 4, as revealed by electron backscatter diffraction. The calculated density using the measured composition is 4.27 g/cm3. The machiite crystal is highly 16O-depleted relative to the coexisting corundum grain (Δ17O = –0.2 ± 2.4‰ and –24.1 ± 2.6‰, respectively; where Δ17O = δ17O – 0.52 × δ18O). Machiite is a new member of the schreyerite (V2Ti3O9) group and a new Sc,Zr-rich ultrarefractory phase formed in the solar nebula, either by gas-solid condensation or as a result of crystallization from a Ca,Al-rich melt having solar-like oxygen isotopic composition (Δ17O~ –25‰) under high-temperature (~1400–1500 °C) and low-pressure (~10-4–10-5 bar) conditions in the CAI-forming region near the protosun. The currently observed disequilibrium oxygen isotopic composition between machiite and corundum may indicate that machiite subsequently experienced oxygen isotopic exchange with a planetary-like 16O-poor gaseous reservoir either in the solar nebula or on the CM chondrite parent body. The name machiite is in honor of Chi Ma, mineralogist at California Institute of Technology, for his contributions to meteorite mineralogy and discovery of many new minerals representing extreme conditions of formation.


2010 ◽  
pp. 97-127 ◽  
Author(s):  
Dmitry Semenov ◽  
Subrata Chakraborty ◽  
Mark Thiemens

Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1475-1488
Author(s):  
Yoshiki Kanzaki

Abstract. To quantify the intensity of oceanic oxygen isotope buffering through hydrothermal alteration of the oceanic crust, a 2D hydrothermal circulation model was coupled with a 2D reactive transport model of oxygen isotopes. The coupled model calculates steady-state distributions of temperature, water flow and oxygen isotopes of solid rock and porewater given the physicochemical conditions of oceanic crust alteration and seawater δ18O. Using the present-day seawater δ18O under plausible modern alteration conditions, the model yields δ18O profiles for solid rock and porewater and fluxes of heat, water and 18O that are consistent with modern observations, confirming the model's validity. The model was then run with different assumed seawater δ18O values to evaluate oxygen isotopic buffering at the midocean ridges. The buffering intensity shown by the model is significantly weaker than previously assumed, and calculated δ18O profiles of oceanic crust are consistently relatively insensitive to seawater δ18O. These results are attributed to the fact that isotope exchange at shallow depths does not reach equilibrium due to the relatively low temperatures, and 18O supply via spreading solid rocks overwhelms that through water flow at deeper depths. Further model simulations under plausible alteration conditions during the Precambrian showed essentially the same results. Therefore, δ18O records of ophiolites that are invariant at different Earth ages can be explained by the relative insensitivity of oceanic rocks to seawater δ18O and do not require constant seawater δ18O through time.


2005 ◽  
Vol 622 (2) ◽  
pp. 1333-1342 ◽  
Author(s):  
Alexander N. Krot ◽  
Ian D. Hutcheon ◽  
Hisayoshi Yurimoto ◽  
Jeffrey N. Cuzzi ◽  
Kevin D. McKeegan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document