scholarly journals The Speed of Light and the Hubble parameter: The Mass-Boom Effect

Author(s):  
Antonio Alfonso-Faus ◽  
B. G. Sidharth ◽  
F. Honsell ◽  
O. Mansutti ◽  
K. Sreenivasan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Gabriel W. Joseph ◽  
Terkaa Victor Targema ◽  
M. O. Kanu

<p>According to the principle of general covariance, the laws of physics are the same in all reference frames. The controversial theory of the Varying Speed of Light (VSL) contradicts the principle of general covariance. Fortunately the VLS theory explains some crucial issues in cosmology such as Lorentz variance, biometric theories, locally Lorentz variance, cosmological constant problem, horizon<em> </em>and flatness<em> </em>problems. Also, recent astronomical observations from quasar show that the fine structural constant depends on redshift and therefore, varies with cosmological time. In other to harness this fascinating and published knowledge, two models where used in this work.  1. Cosmology with variables c; here the Friedmann-Robertson-Walker (FRW) is used in the Einstein field equation with variable c and Λ terms to obtain the scale factor, which shows the continuous exponential expansion of the universe. 2. Variation of the speed of light as a function of the scale factor of the universe; here we obtained: a good approximation to estimate the current age of the universe. The scale factor of the universe depends its content given by the equation of state parameter ω. We obtained the deceleration parameter in terms of the Hubble parameter. We arrived at a conclusion that the universe was decelerating at ω = 1, accelerating at ω = 1/3 and the Hubble parameter diverges at the beginning and end of the universe.</p>


2014 ◽  
Vol 3 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Piero Chiarelli

This work shows that in the frame of the stochastic generalization of the quantum hydrodynamic analogy (QHA) the uncertainty principle is fully compatible with the postulate of finite transmission speed of light and information. The theory shows that the measurement process performed in the large scale classical limit in presence of background noise, cannot have a duration smaller than the time need to the light to travel the distance up to which the quantum non-local interaction extend itself. The product of the minimum measuring time multiplied by the variance of energy fluctuation due to presence of stochastic noise shows to lead to the minimum uncertainty principle. The paper also shows that the uncertainty relations can be also derived if applied to the indetermination of position and momentum of a particle of mass m in a quantum fluctuating environment.


2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


2019 ◽  
Author(s):  
Vitaly Kuyukov

The uncertainty principle between the Hubble parameter and the volume of space.


Author(s):  
Karel Schrijver

This chapter briefly reviews some the challenges encountered in the search for extraterrestrial life. So far, no signs of extraterrestrial life have been found. The search started with radio telescopes, looking for technology-based civilizations, but new strategies have emerged that take on the primary challenges in this search: the enormous distances to exoplanets and the question of the true nature of life. The author outlines the development of new tools for the search, and why the present focus is on Earth-sized exoplanets with a potential for liquid water on their surfaces. Not having been visited by an alien civilization presents us with a paradox: if life develops as quickly elsewhere as on Earth, then why have we not been contacted? Is the speed of light too slow to cross interstellar distances, is life intrinsically rare, or should we conclude that civilizations are intrinsically short-lived?


Sign in / Sign up

Export Citation Format

Share Document