Dielectric and ferroelectric properties of lead zirconate titanate-lead nickel niobate ceramics under compressive stress

2009 ◽  
Vol 105 (8) ◽  
pp. 084111 ◽  
Author(s):  
M. Unruan ◽  
A. Prasartketrakarn ◽  
A. Ngamjarurojana ◽  
Y. Laosiritaworn ◽  
S. Ananta ◽  
...  
2003 ◽  
Vol 18 (12) ◽  
pp. 2882-2889 ◽  
Author(s):  
Naratip Vittayakorn ◽  
Gobwute Rujijanagul ◽  
Tawee Tunkasiri ◽  
Xiaoli Tan ◽  
David P. Cann

The ternary system of lead nickel niobate Pb(Ni1/3Nb2/3)O3 (PNN), lead zinc niobate Pb(Zn1/3Nb2/3)O3 (PZN), and lead zirconate titanate Pb(Zr1/2Ti1/2)O3 (PZT) was investigated to determine the influence of different solid state processing conditions on dielectric and ferroelectric properties. The ceramic materials were characterized using x-ray diffraction, dielectric measurements, and hysteresis measurements. To stabilize the perovskite phase, the columbite route was utilized with a double crucible technique and excess PbO. The phase-pure perovskite phase of PNN–PZN–PZT ceramics was obtained over a wide compositional range. It was observed that for the ternary system 0.5PNN–(0.5 - x)PZN–xPZT, the change in the transition temperature (Tm) is approximately linear with respect to the PZT content in the range x [H11505] 0 to 0.5. With an increase in x, Tm shifts up to high temperatures. Examination of the remanent polarization (Pr) revealed a significant increase with increasing x. In addition, the relative permittivity ([H9280]r) increased as a function of x. The highest permittivities ([H9280]r [H11505] 22,000) and the highest remanent polarization (Pr [H11505] 25 μC/cm2) were recorded for the binary composition 0.5Pb(Ni1/3Nb2/3)O3–0.5Pb(Zr1/2Ti1/2)O3.


2010 ◽  
Vol 64 (18) ◽  
pp. 1960-1963 ◽  
Author(s):  
Muangjai Unruan ◽  
Anurak Prasatkhetragarn ◽  
Yongyut Laosiritaworn ◽  
Supon Ananta ◽  
Orawan Khamman ◽  
...  

2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


1991 ◽  
Vol 58 (25) ◽  
pp. 2910-2912 ◽  
Author(s):  
Hideo Kidoh ◽  
Toshio Ogawa ◽  
Akiharu Morimoto ◽  
Tatsuo Shimizu

2009 ◽  
Vol 382 (1) ◽  
pp. 49-55 ◽  
Author(s):  
P. Ketsuwan ◽  
Anurak Prasatkhetragarn ◽  
N. Triamnuk ◽  
C. C. Huang ◽  
A. Ngamjarurojana ◽  
...  

2012 ◽  
Vol 38 ◽  
pp. S17-S20 ◽  
Author(s):  
Orawan Khamman ◽  
Rattikorn Yimnirun ◽  
Narin Sirikulrat ◽  
Supon Ananta

Sign in / Sign up

Export Citation Format

Share Document