Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

Author(s):  
Iffat Zareen Ahmad ◽  
Shanthy Sundaram ◽  
Ashutosh Tripathi ◽  
K. K. Soumya ◽  
M. R. Singh ◽  
...  
Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 275
Author(s):  
Khaled A. Selim ◽  
Michael Haffner

Non-diazotrophic cyanobacteria are unable to fix atmospheric nitrogen and rely on combined nitrogen for growth and development. In the absence of combined nitrogen sources, most non-diazotrophic cyanobacteria, e.g., Synechocystis sp. PCC 6803 or Synechococcus elongatus PCC 7942, enter a dormant stage called chlorosis. The chlorosis process involves switching off photosynthetic activities and downregulating protein biosynthesis. Addition of a combined nitrogen source induces the regeneration of chlorotic cells in a process called resuscitation. As heavy metals are ubiquitous in the cyanobacterial biosphere, their influence on the vegetative growth of cyanobacterial cells has been extensively studied. However, the effect of heavy metal stress on chlorotic cyanobacterial cells remains elusive. To simulate the natural conditions, we investigated the effects of long-term exposure of S. elongatus PCC 7942 cells to both heavy metal stress and nitrogen starvation. We were able to show that elevated heavy metal concentrations, especially for Ni2+, Cd2+, Cu2+ and Zn2+, are highly toxic to nitrogen starved cells. In particular, cells exposed to elevated concentrations of Cd2+ or Ni2+ were not able to properly enter chlorosis as they failed to degrade phycobiliproteins and chlorophyll a and remained greenish. In resuscitation assays, these cells were unable to recover from the simultaneous nitrogen starvation and Cd2+ or Ni2+ stress. The elevated toxicity of Cd2+ or Ni2+ presumably occurs due to their interference with the onset of chlorosis in nitrogen-starved cells, eventually leading to cell death.


2011 ◽  
Vol 347-353 ◽  
pp. 2735-2738 ◽  
Author(s):  
Guang Yu Chi ◽  
Yi Shi ◽  
Xin Chen ◽  
Jian Ma ◽  
Tai Hui Zheng

Vegetation which suffers from heavy metal stresses can cause changes of leaf color, shape and structural changes. The spectral characteristics of vegetation leaves is related to leaf thickness, leaf surface characteristics, the content of water, chlorophyll and other pigments. So the eco-physiology changes of plants can be reflected by spectral reflectance. Studies on the spectral response of vegetation to heavy metal stress can provide a theoretical basis for remote sensing monitoring of metal pollution in soils. In recent decades, there are substantial amounts of literature exploring the effects of heavy metals on vegetation spectra.


2005 ◽  
Vol 162 (6) ◽  
pp. 634-649 ◽  
Author(s):  
Fouad Ouziad ◽  
Ulrich Hildebrandt ◽  
Elmon Schmelzer ◽  
Hermann Bothe

Sign in / Sign up

Export Citation Format

Share Document