Distinguishing Heavy-Metal Stress Levels in Rice Using Synthetic Spectral Index Responses to Physiological Function Variations

Author(s):  
Ming Jin ◽  
Xiangnan Liu ◽  
Ling Wu ◽  
Meiling Liu
Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 860 ◽  
Author(s):  
Tianjiao Liu ◽  
Xiangnan Liu ◽  
Meiling Liu ◽  
Ling Wu

Author(s):  
Xinyu Zou ◽  
Xiangnan Liu ◽  
Mengxue Liu ◽  
Meiling Liu ◽  
Biyao Zhang

Previous studies make it possible to use remote sensing techniques to monitor heavy metal stress of rice synchronously and continuously. However, most studies mainly focus on the analysis of rice’s visual symptoms and physiological functions rather than temporal information during the growth period, which may reflect significant changes of rice under heavy metal stress. In this paper, an enhanced spatial and temporal adaptive reflectance fusion model was used to generate synthetic Landsat time series. A normalized difference water index and an enhanced vegetation index were employed to build phenological phase space. Then, the ratio of the rice growth rate fluctuation (GRFI Ratio) was constructed for discriminating the different heavy metal stress levels on rice. Results suggested that the trajectories of rice growth in phenological phase space can depict the similarities and differences of rice growth under different heavy metal stress levels. The most common phenological parameters in the phase space cannot accurately discriminate the heavy metal stress level. However, the GRFI Ratio that we proposed outperformed in discriminating different levels of heavy metal stress. This study suggests that this framework of detecting the heavy metal pollution in paddy filed based on phenological phase space and temporal profile analysis is promising.


Author(s):  
Yibo Tang ◽  
Meiling Liu ◽  
Xiangnan Liu ◽  
Ling Wu ◽  
Bingyu Zhao ◽  
...  

Crops under various types of stresses, such as stress caused by heavy metals, drought and pest/disease exhibit similar changes in physiological-biochemical parameters (e.g., leaf area index [LAI] and chlorophyll). Thus, differentiating between heavy metal stress and nonheavy metal stress presents a great challenge. However, different stressors in crops do cause variations in spatiotemporal characteristics. This study aims to develop a spatiotemporal index based on LAI time series to identify heavy metal stress under complex stressors on a regional scale. The experimental area is located in Zhuzhou City, Hunan Province. The situ measured data and Sentinel-2A images from 2017 and 2018 were collected. First, a series of LAI in rice growth stages was simulated based on the WOrld FOod STudies (WOFOST) model incorporated with Sentinel 2 images. Second, the local Moran’s I and dynamic time warping (DTW) of LAI were calculated. Third, a stress index based on spatial and temporal features (SIST) was established to assess heavy metal stress levels according to the spatial autocorrelation and temporal dissimilarity of LAI. Results revealed the following: (1) The DTW of LAI is a good indicator for distinguishing stress levels. Specifically, rice subjected to high stress levels exhibits high DTW values. (2) Rice under heavy metal stress is well correlated with high-high SIST clusters. (3) Rice plants subjected to high pollution are observed in the northwest of the study regions and rice under low heavy metal stress is found in the south. The results suggest that SIST based on a sensitive indicator of rice biochemical impairment can be used to accurately detect regional heavy metal stress in rice. Combining spatial-temporal features and spectral information appears to be a highly promising method for discriminating heavy metal stress from complex stressors.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2172 ◽  
Author(s):  
Zhijiang Zhang ◽  
Meiling Liu ◽  
Xiangnan Liu ◽  
Gaoxiang Zhou

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4425 ◽  
Author(s):  
Tianjiao Liu ◽  
Xiangnan Liu ◽  
Meiling Liu ◽  
Ling Wu

Heavy metal pollution in crops leads to phenological changes, which can be monitored by remote sensing technology. The present study aims to develop a method for accurately evaluating heavy metal stress in rice based on remote sensing phenology. First, the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) was applied to blend Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat to generate a time series of fusion images at 30 m resolution, and then the vegetation indices (VIs) related to greenness and moisture content of the rice canopy were calculated to create the time-series of VIs. Second, phenological metrics were extracted from the time-series data of VIs, and a feature selection scheme was designed to acquire an optimal phenological metric subset. Finally, an ensemble model with optimal phenological metrics as classification features was built using random forest (RF) and gradient boosting (GB) classifiers, and the classification of stress levels was implemented. The results demonstrated that the overall accuracy of discrimination for different stress levels is greater than 98%. This study suggests that fusion images can be utilized to detect heavy metal stress in rice, and the proposed method may be applicable to classify stress levels.


Sign in / Sign up

Export Citation Format

Share Document