Expression and function analysis of crustacyanin gene family involved in resistance to heavy metal stress and body color formation in Exopalaemon carinicauda

Author(s):  
Huan Gao ◽  
Hangke Ma ◽  
Jinqiu Sun ◽  
Wanyuan Xu ◽  
Wei Gao ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ahmed H. El-Sappah ◽  
Rania G. Elbaiomy ◽  
Ahmed S. Elrys ◽  
Yu Wang ◽  
Yumin Zhu ◽  
...  

Metal tolerance proteins (MTPs) encompass plant membrane divalent cation transporters to specifically participate in heavy metal stress resistance and mineral acquisition. However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The structural analysis of MtMTPs displayed high gene similarity within the same group where all of them have cation_efflux domain or ZT_dimer. Cis-acting element analysis suggested that various abiotic stresses and phytohormones could induce the most MtMTP gene transcripts. Among all MTPs, PF16916 is the specific domain, whereas GLY, ILE, LEU, MET, ALA, SER, THR, VAL, ASN, and PHE amino acids were predicted to be the binding residues in the ligand-binding site of all these proteins. RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. MtMTP genes displayed differential responses in plant leaves, stems, and roots under five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). Ten, seven, and nine MtMTPs responded to at least one metal ion treatment in the leaves, stems, and roots, respectively. Additionally, MtMTP1.1, MtMTP1.2, and MtMTP4 exhibited the highest expression responses in most heavy metal treatments. Our results presented a standpoint on the evolution of MTPs in M. truncatula. Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1849
Author(s):  
Chiran Zhang ◽  
Qianhui Yang ◽  
Xiaoqin Zhang ◽  
Xian Zhang ◽  
Tongyuan Yu ◽  
...  

In recent years, cadmium (Cd) pollution in soil has increased with increasing industrial activities, which has restricted crop growth and agricultural development. The heavy metal ATPase (HMA) gene family contributes to heavy metal stress resistance in plants. In this study, 21 HMA genes (HvHMAs) were identified in barley (Hordeumvulgare L., Hv) using bioinformatics methods. Based on phylogenetic analysis and domain distribution, barley HMA genes were divided into five groups (A–E), and complete analyses were performed in terms of physicochemical properties, structural characteristics, conserved domains, and chromosome localization. The expression pattern analysis showed that most HvHMA genes were expressed in barley and exhibited tissue specificity. According to the fragments per kilobase of exon per million fragments values in shoots from seedlings at the 10 cm shoot stage (LEA) and phylogenetic analysis, five HvHMA genes were selected for expression analysis under Cd stress. Among the five HvHMA genes, three (HvHMA1, HvHMA3, and HvHMA4) were upregulated and two (HvHMA2 and HvHMA6) were downregulated following Cd treatments. This study serves as a foundation for clarifying the functions of HvHMA proteins in the heavy metal stress resistance of barley.


2021 ◽  
Author(s):  
Dandan Li ◽  
Guandi He ◽  
Weijun Tian ◽  
Yun Huang ◽  
Lulu Meng ◽  
...  

Abstract Metal tolerance proteins play an important role in the transport and tolerance of divalent heavy metals in plant species. Potatoes are an important food crop whose yields can be deeply affected by heavy metals. However, there is a lack of information concerning the members and function of the MTP gene family in Solanum tuberosum. In this study, we identified and screened 11 MTP genes in potatoes which we named as StMTP1 to StMTP11 based on their positions on the chromosomes. Phylogenetic analysis divided these 11 MTP genes into three subfamilies; Mn-MTP, Zn-MTP and Zn/Fe-MTP. HXXXD and DXXXD conserved motifs were found on or around the transmembrane domain II and transmembrane domain V of these proteins. The highly conserved histidine and aspartic acid residues may be related to the transport of metal ions. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of StMTP9 and StMTP10 in leaf tissues increased by around 24-fold following cadmium stress for 24 hours. We hypothesize that StMTP9 and StMTP10 respond to cadmium stress. StMTP11 showed the highest level of expression in stem tissues after 6 hours of zinc stress at more than 13 times the level of expression in controls indicating that StMTP11 is more sensitive to zinc stress. In summary, our results further the current understanding of the molecular mechanisms regulated by members of the MTP gene family in plant responses to heavy metal stress.


Crustaceana ◽  
2019 ◽  
Vol 92 (8) ◽  
pp. 997-1005
Author(s):  
Hangke Ma ◽  
Jinqiu Sun ◽  
Wanyuan Xu ◽  
Qin Dai ◽  
Guangwei Hu ◽  
...  

Abstract For the purpose of studying the epigenetic characteristics of the mitochondrial genome of the ridgetail white prawn, Exopalaemon carinicauda (Holthuis, 1950) under Cd2+ and Cr6+ heavy metal stress, the mitochondrial DNA methylation of E. carinicauda was analysed by bisulfite sequencing PCR (BSP). Many methylation sites were found at the 3′ end sequence of COX3 and at the starting region sequence of ND3, while only a few methylation sites were found at the 3′ end sequence of ND5. The mitochondrial genome was inferred to regulate the energy metabolism through the methylation process. In addition, under Cd2+ stress, mitochondrial DNA methylation was more common, and found during all stress periods (3, 6, 12, 24, 48, 72 and 96 h), while under Cr6+ stress, mitochondrial DNA methylation was less common, mainly occurring after 48 hours of stress. The sensitivity of the mitochondrial genome response to Cd2+ stress was inferred to be greater than that to Cr6+. This study revealed for the first time that methylation occurs in the mitochondrial genome of E. carinicauda in response to heavy metal stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Huang ◽  
Guandi He ◽  
Weijun Tian ◽  
Dandan Li ◽  
Lulu Meng ◽  
...  

A genome-wide identification and expression analysis of multidrug and toxic compound extrusion (MATE) gene family in potato was carried out to explore the response of MATE proteins to heavy meta stress. In this study, we identified 64 MATE genes from potato genome, which are located on 12 chromosomes, and are divided into I–IV subfamilies based on phylogenetic analysis. According to their order of appearance on the chromosomes, they were named from StMATE1–64. Subcellular location prediction showed that 98% of them are located on the plasma membrane as transporters. Synteny analysis showed that five pairs of collinearity gene pairs belonged to members of subfamily I and subfamily II had two pairs indicating that the duplication is of great significance to the evolution of genes in subfamilies I and II. Gene exon–intron structures and motif composition are more similar in the same subfamily. Every StMATE gene contained at least one cis-acting element associated with regulation of hormone transport. The relative expression levels of eight StMATE genes were significantly upregulated under Cu2+ stress compared with the non-stress condition (0 h). After Cd2+ stress for 24 h, the expression levels of StMATE33 in leaf tissue were significantly increased, indicating its crucial role in the process of Cd2+ stress. Additionally, StMATE18/60/40/33/5 were significantly induced by Cu2+ stress, while StMATE59 (II) was significantly induced by Ni2+ stress. Our study initially explores the biological functions of StMATE genes in the regulation of heavy metal stress, further providing a theoretical basis for studying the subsequent molecular mechanisms in detail.


2020 ◽  
Author(s):  
Qinqin Wang ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
Lanjie Zhao ◽  
Mingge Han ◽  
...  

Abstract Background: Soil salinized and heavy metal toxicity has become a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in different plants, little is known in Gossypium.Results: A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family and divided into five classes. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements and transcription factor binding sites (TFBS) for abiotic stress.Conclusions: Current study provides important information about HMAD genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.


Sign in / Sign up

Export Citation Format

Share Document