Determination of the pressure dependent melting temperatures of Al and Ni using molecular dynamics

2009 ◽  
Vol 106 (6) ◽  
pp. 063524 ◽  
Author(s):  
N. Scott Weingarten ◽  
William D. Mattson ◽  
Betsy M. Rice
1995 ◽  
Vol 408 ◽  
Author(s):  
P. W.-C. Kung ◽  
J. T. Books ◽  
C. M. Freeman ◽  
S. M. Levine ◽  
B. Vessali ◽  
...  

AbstractWe have used constant pressure molecular dynamics calculations to explore the behavior at various temperatures of two molecular crystals: benzene and a brominated phenyl compound. We observed a melting transition by heating the crystals from a low temperature. In the case of benzene, we performed one heating run of about 1 ns and obtained agreement with the experimental melting point to within some 8%. We have also simulated the melting of a more complex molecular crystal that contains bromine and phenyl groups. We performed four heating runs, with different rates of heating. For total simulation times of about 100, 220, 770, and 1 I50ps, the heating runs predicted melting temperatures that differed from the experimental melting temperature by 53%, 33%, 25%, and 9% respectively.


2005 ◽  
Vol 237-240 ◽  
pp. 145-150 ◽  
Author(s):  
Sébastien Garruchet ◽  
A. Hasnaoui ◽  
Olivier Politano ◽  
Tony Montesin ◽  
J. Marcos Salazar ◽  
...  

In this paper we give a brief presentation of the approaches we have recently developed on the oxidation of metals. Firstly, we present an analytical model based on non-equilibrium thermodynamics to describe the reaction kinetics present during the oxidation of a metal. Secondly, we present the molecular dynamics results obtained with a code specially tailored to study the oxidation and growth of an oxide film of aluminium. Our simulations present an excellent agreement with experimental results.


2021 ◽  
Author(s):  
Xue-Qi Lv ◽  
Xiong-Ying Li

Abstract The melting at the magnesium/aluminum (Mg/Al) interface is an essential step during the fabrications of Mg-Al structural materials and biomaterials. We carried out molecular dynamics simulations on the melting at the Mg/Al interface in a Mg-Al-Mg nanolayer via analyzing the changes of average atomic potential energy, Lindemann index, heat capacity, atomic density distribution and radial distribution function with temperature. The melting temperatures (T m) of the nanolayer and the slabs near the interface are significantly sensitive to the heating rate (v h) over the range of v h≤4.0 K/ps. The distance (d) range in which the interface affects the melting of the slabs is predicted to be (-98.2, 89.9) Å at v h→0, if the interface is put at d=0 and Mg (Al) is located at the left (right) side of the interface. The (T m) of the Mg (Al) slab just near the interface (e.g., d=4.0 Å) is predicted to be 926.8 K (926.6 K) at v h→0, with 36.9 K (37.1 K) below 963.7 K for the nanolayer. These results highlight the importance of regional research on the melting at an interface in the nanolayers consisting of two different metals.


Sign in / Sign up

Export Citation Format

Share Document