scholarly journals Recurrence plots and chaotic motion around Kerr black hole

Author(s):  
Ondřej Kopáček ◽  
Jiří Kovář ◽  
Vladimír Karas ◽  
Zdeněk Stuchlík ◽  
Manuel de León ◽  
...  
2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Xuan Zhou ◽  
Songbai Chen ◽  
Jiliang Jing

AbstractWe present firstly the equation of motion for the test scalar particle coupling to the Chern–Simons invariant in Kerr black hole spacetime by the short-wave approximation. We have analyzed the dynamical behaviors of the test coupled particles by applying techniques including Poincaré sections, fast Lyapunov exponent indicator, bifurcation diagram and basins of attraction. It is shown that there exists chaotic phenomenon in the motion of scalar particle interacted with the Chern–Simons invariant in a Kerr black hole spacetime. With the increase of the coupling strength, the motion of the coupled particles for the chosen parameters first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Thus, the coupling between scalar particle and Chern–Simons invariant yields the richer dynamical behavior of scalar particle in a Kerr black hole spacetime.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Olivier Sarbach ◽  
Emilio Tejeda
Keyword(s):  

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


2005 ◽  
Vol 44 (6) ◽  
pp. 1037-1040
Author(s):  
Ren Zhao ◽  
Sheng-Li Zhang

Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Yasufumi Kojima ◽  
Yuto Kimura

Short timescale variability is often associated with a black hole system. The consequence of an electromagnetic outflow suddenly generated near a Kerr black hole is considered assuming that it is described by a solution of a force-free field with a null electric current. We compute charged particle acceleration induced by the burst field. We show that the particle is instantaneously accelerated to the relativistic regime by the field with a very large amplitude, which is characterized by a dimensionless number κ. Our numerical calculation demonstrates how the trajectory of the particle changes with κ. We also show that the maximum energy increases with κ2/3. The typical maximum energy attained by a proton for an event near a super massive black hole is Emax∼100 TeV, which is enough observed high-energy flares.


Sign in / Sign up

Export Citation Format

Share Document