Preparation of textured diamond films on Si substrates by hot‐filament chemical‐vapor deposition

1993 ◽  
Vol 74 (5) ◽  
pp. 3519-3522 ◽  
Author(s):  
Keiko Ikoma ◽  
Mitsugu Yamanaka
1994 ◽  
Vol 339 ◽  
Author(s):  
G. Popovici ◽  
C. H. Chao ◽  
M. A. Prelas ◽  
E. J. Charlson ◽  
J. M. Meese

ABSTRACTSmooth diamond films have been grown by hot filament chemical vapor deposition under d.c. bias on mirror-polished Si substrates. Films a few micrometers thick were obtained in 30 minutes. Raman spectra showed very broad diamond peaks. X-ray diffraction showed the presence of diamond and also other carbon phase with a line 2.11 Å. With time, the films apparently underwent a phase transformation.


1995 ◽  
Vol 10 (8) ◽  
pp. 2011-2016 ◽  
Author(s):  
Galina Popovici ◽  
C.H. Chao ◽  
M.A. Prelas ◽  
E.J. Charlson ◽  
J.M. Meese

Diamond films have been grown by hot filament chemical vapor deposition (CVD) on mirror-polished positively biased Si substrates. Very smooth films a few micrometers thick were obtained in only 30 min. SEM, x-ray diffraction patterns, and Raman were used to characterize the films. Not only diamond but other carbon phases, were also detected. The initial structure showed a high density of defects and large stresses. Structural changes in time were found to occur with films apparently undergoing a phase transformation.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


2019 ◽  
Vol 494 ◽  
pp. 401-411 ◽  
Author(s):  
Guangyu Yan ◽  
Yuhou Wu ◽  
Daniel Cristea ◽  
Lusheng Liu ◽  
Mircea Tierean ◽  
...  

1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

1989 ◽  
Author(s):  
Edward N. Farabaugh ◽  
Albert Feldman ◽  
Lawrence H. Robins ◽  
Edgar S. Etz

Sign in / Sign up

Export Citation Format

Share Document