Examination of the material properties and performance of thin-diamond film cutting tool inserts produced by arc-jet and hot filament chemical vapor deposition

1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.

1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

2008 ◽  
Vol 8 (5) ◽  
pp. 2534-2539
Author(s):  
Linjun Wang ◽  
Jianmin Liu ◽  
Ling Ren ◽  
Qingfeng Su ◽  
Weimin Shi ◽  
...  

With reducing diamond grain size to nano-grade, the increase of grain boundaries and non-diamond phase will result in the change of the optical properties of chemical vapor deposition (CVD) diamond films. In this paper, the structure, morphology and optical properties of nanocrystalline diamond (NCD) films, deposited by hot-filament chemical vapor deposition (HFCVD) method under different carbon concentration, are investigated by SEM, Raman scattering spectroscopy, as well as optical transmission spectra and spectroscopic ellipsometry. With increasing the carbon concentration during the film deposition, the diamond grain size is reduced and thus a smooth diamond film can be obtained. According to the data on the absorption coefficient in the wavelength range from 200 to 1100 nm, the optical gap of the NCD films decreases from 4.3 eV to 3.2 eV with increasing the carbon concentration from 2.0% to 3.0%. From the fitting results on the spectroscopic ellipsometric data with a four-layer model in the photon energy range of 0.75–1.5 eV, we can find the diamond film has a lower refractive index (n) and a higher extinction coefficient (k) when the carbon concentration increases.


2010 ◽  
Vol 443 ◽  
pp. 510-515 ◽  
Author(s):  
Hung Yin Tsai ◽  
Chih Cheng Chang ◽  
Chih Wei Wu

The development of homoepitaxial films for advanced device applications has been studied, but high growth rate and diamond film quality have not yet been explored. In the current study, high quality homoepitaxial diamond films were grown on type Ib (100) HPHT synthetic diamond substrate by hot-filament chemical vapor deposition. The reactant gases were mixed by CH4 and H2 with small amounts of N2 (500 to 3000 ppm). Besides, a bias system was used to assist diamond film deposition. The pyramidal crystals on diamond surface can be suppressed and high quality diamond film of FWHM (Full Width at Half Maximum) = 10.76 cm-1 with high growth rate of 8.78 ± 0.2 μm/ hr was obtained at the condition of adding 1000 ppm nitrogen. At the bias voltage of -150 V, the pyramidal crystals can also be suppressed and high quality diamond film of FWHM = 10.19 cm-1 was obtained. With nitrogen addition above 2000 ppm, diamond film was partly doped and some sp2 structures appeared. These homoepitaxial diamond films were characterized by optical microscopy and micro-Raman spectroscopy.


2017 ◽  
Vol 23 (S1) ◽  
pp. 2272-2273 ◽  
Author(s):  
M.J. Arellano-Jimenez ◽  
J. J. Alcantar-Peña ◽  
J.E. Ortega Aguilar ◽  
M.J. Yacaman ◽  
O. Auciello

1994 ◽  
Vol 339 ◽  
Author(s):  
D. Ganesan ◽  
S. C. Sharma

ABSTRACTWe have conducted x-ray diffraction, Raman spectroscopy, and scanning electron microscopy analyses of diamond films grown by hot filament assisted chemical vapor deposition (HFCVD). We present results on the relative abundance of the (111), (220) and (400) faces in polycrystalline diamond films as functions of CH4 concentration. The intensity of the (111) peak can be varied from about 20% to 60% by adjusting CH4 in CH4/H2 mixtures. We also present results on preferred orientation in films grown under varying hydrogen treatments. We discuss correlations between the preferred orientation, FWHM of the diamond peak in the Raman spectrum, and surface morphology of the films.


Sign in / Sign up

Export Citation Format

Share Document