Formation of longitudinal wave band structures in one-dimensional phononic crystals

2011 ◽  
Vol 109 (7) ◽  
pp. 073515 ◽  
Author(s):  
Y. Q. Guo ◽  
D. N. Fang
Meccanica ◽  
2017 ◽  
Vol 53 (4-5) ◽  
pp. 923-935 ◽  
Author(s):  
Ying Wu ◽  
Kaiping Yu ◽  
Linyun Yang ◽  
Rui Zhao

2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Y. Q. Guo ◽  
D. N. Fang

Beam-type phononic crystals as one kind of periodic material bear frequency bands for bending waves. For the first time, this paper presents formation mechanisms of the phase constant spectra in pass-bands of bending waves (coupled flexural and thickness-shear waves) in bicoupled beam-type phononic crystals based on the model of periodic binary beam with rigidly connected joints. Closed-form dispersion relation of bending waves in the bicoupled periodic binary beam is obtained by our proposed method of reverberation-ray matrix (MRRM), based on which the bending-wave band structures in the bicoupled binary beam phononic crystal are found to be generated from the dispersion curves of the equivalent bending waves in the unit cell due to the zone folding effect, the cut-off characteristic of thickness-shear wave mode, and the wave interference phenomenon. The ratios of band-coefficient products, the characteristic times of the unit cell and the characteristic times of the constituent beams are revealed as the three kinds of essential parameters deciding the formation of bending-wave band structures. The MRRM, the closed-form dispersion relation, the formation mechanisms, and the essential parameters for the bending-wave band structures in bicoupled binary beam phononic crystals are validated by numerical examples, all of which will promote the applications of beam-type phononic crystals for wave filtering/guiding and vibration isolation/control.


2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Zuguang Bian ◽  
Wei Peng ◽  
Jizhou Song

Phononic crystals make the realization of complete acoustic band gaps possible, which suggests many applications such as vibration isolation, noise suppression, acoustic barriers, filters, wave guides, and transducers. In this paper, an analytic model, based on the transfer matrix method, is developed to study the band structures of bulk acoustic waves including SH-, P-, and SV-waves in a one-dimensional phononic crystal, which is formed by alternating strips of two different materials. The analysis is demonstrated by the phononic crystal of Ba0.7Sr0.3TiO3 (BST) and polybutylene terephthalate (PBT), whose elastic properties depend strongly on the temperature. The results show that some band gaps are very sensitive to the temperature. Depending on the wave mode, the center frequency of the first band gap may decrease over 25% and band gap width may decrease over 60% as the temperature increases from 30 °C to 50 °C. The transmission of acoustic waves in a finite phononic crystal is also studied through the coefficient of transmission power. These results are very useful for the design and optimization of thermal tuning of phononic crystals.


2015 ◽  
Vol 29 (35n36) ◽  
pp. 1550242
Author(s):  
Rongqiang Liu ◽  
Haojiang Zhao ◽  
Yingying Zhang ◽  
Honghwei Guo ◽  
Zongquan Deng

The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.


Sign in / Sign up

Export Citation Format

Share Document