scholarly journals Comparison between beryllium and diamond-backing plates in diamond-anvil cells: Application to single-crystal x-ray diffraction high-pressure data

2011 ◽  
Vol 82 (5) ◽  
pp. 055111 ◽  
Author(s):  
Benedetta Periotto ◽  
Fabrizio Nestola ◽  
Tonci Balic-Zunic ◽  
Ross J. Angel ◽  
Ronald Miletich ◽  
...  
1987 ◽  
Vol 26 (Part 1, No. 12) ◽  
pp. 2107-2110 ◽  
Author(s):  
Katsutoshi Aoki ◽  
Yozo Kakudate ◽  
Masatake Yoshida ◽  
Shu Usuba ◽  
Katsumi Tanaka ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Paola Comodi ◽  
Maximiliano Fastelli ◽  
Giacomo Criniti ◽  
Konstantin Glazyrin ◽  
Azzurra Zucchini

High-pressure synchrotron X-ray diffraction was carried out on a single crystal of mascagnite, compressed in a diamond anvil cell. The sample maintained its crystal structure up to ~18 GPa. The volume–pressure data were fitted by a third-order Birch–Murnaghan equation of state (BM3-EOS) yielding K0 = 20.4(7) GPa, K’0 = 6.1(2), and V0 = 499(1) Å3, as suggested by the F-f plot. The axial compressibilities, calculated with BM3-EOS, were K0a = 35(3), K’0a = 7.7(7), K0b = 10(3), K’0b = 7(1), K0c = 25(1), and K’0c = 4.3(2) The axial moduli measured using a BM2-EOS and fixing K’0 equal to 4, were K0a = 52(2), K0b = 20 (1), and K0c = 29.6(4) GPa, and the anisotropic ratio of K0a:K0b:K0c = 1:0.4:0.5. The evolution of crystal lattice and geometrical parameters indicated no phase transition until 17.6 GPa. Sulphate polyhedra were incompressible and the density increase of 30% compared to investigated pressure should be attributed to the reduction of weaker hydrogen bonds. In contrast, some of them, directed along [100], were very short at room temperature, below 2 Å, and showed a very low compressibility. This configuration explains the anisotropic compressional behavior and the lowest compressibility of the a axis.


Author(s):  
Ross J. Angel ◽  
Sula Milani ◽  
Matteo Alvaro ◽  
Fabrizio Nestola

AbstractWe describe the experimental protocols necessary to measure the crystal structures of minerals trapped within diamonds by single-crystal X-ray diffraction to the same quality as obtained from minerals studied at ambient conditions. The results show that corrections for X-ray absorption in complex cases can be made with good precision. Comparison of the refined structure of a single-crystal olivine inclusion inside a diamond with the structure of a similar olivine held in a high-pressure diamond-anvil cell shows that data resolution, not the correction for absorption effects, is the dominant factor in influencing the quality of structures determined at high pressures by single-crystal X-ray diffraction.


1992 ◽  
Vol 39 (1-4) ◽  
pp. 13-32 ◽  
Author(s):  
R. J. Angel ◽  
N. L. Ross ◽  
I. G. Wood ◽  
P. A. Woods

2010 ◽  
Vol 66 (a1) ◽  
pp. s95-s96
Author(s):  
L. Dubrovinsky ◽  
N. Dubrovinskaia ◽  
K. Glazyrin ◽  
M. Merlini ◽  
M. Hanfland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document