high pressure cell
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 26)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Céleste Odier ◽  
Margaux Kerdraon ◽  
Emie Lacombe ◽  
Eric Delamaide

Abstract In heavy oil reservoirs operated by steam injection, foam has a double benefit. By improving the steam sweep efficiency within the reservoir, foam increases oil recovery while reducing the amount of injected steam. However, in the field, this technology is not always very effective due to the fact that it is difficult to find foaming agents that can withstand temperatures above 200°C. Moreover, the agents that form stable foams at such temperatures are often insoluble at ambient temperature, and therefore difficult to solubilize in the field. Thus, a compromise between good solubility in surface conditions and high temperature foaming performances in the reservoir has to be found. In this study, we show that it is possible to boost chemicals that form foam at very high temperature with an additive to greatly improve their solubility at ambient temperature while maintaining their high foaming performance at high temperature. Two foaming agents of increasing degree of hydrophobicity (H and HH) were initially selected for this study. The first one shows high foaming performances in porous media and in a high-pressure cell at temperatures comprised in between 150 and 220°C. The second one, more hydrophobic, is particularly performant at temperatures comprised in between 220°C and at least 280°C. Using a robotic platform, the temperature at which the foaming solution for agents H and HH needs to be heated to be solubilized, was evaluated with an accuracy of 5°C in four brines (varying salinity and hardness). We found that the temperature at which both agents become soluble is above 60°C, still too high for a field application. In the second part of the study, these hydrophobic molecules were coupled to a pre-selected additive. The resulting mixtures were again qualified in terms of solubility and foaming performances. We show that by coupling these hydrophobic agents with an additive, we are able to maintain their excellent foaming performances while decreasing their solubilisation temperature down to room temperature. To the best of our knowledge, this is the first time that very high temperature foam stability assessment up to 280°C is combined to solubility measurements to design performant foaming solutions that will be easy to handle in the field for steam foam applications. Interestingly, we show that the hydrophobicity of agents that is required for high temperature foam generation can be balanced by a more hydrophilic agent without reducing their foaming performances.


2021 ◽  
Vol 90 (7) ◽  
pp. 074001
Author(s):  
Naoka Hiraoka ◽  
Kelton Whiteaker ◽  
Marian Blankenhorn ◽  
Yoshiyuki Hayashi ◽  
Ryosuke Oka ◽  
...  

2021 ◽  
Author(s):  
John W. Ostrander ◽  
Carolyn Torres ◽  
Fride Vullum-Breuer ◽  
Dale Teeters

Abstract Solid state batteries, particularly for lithium ion based architecture have been the focus of development for over 20 years and are receiving even more attention today. Utilizing impedance spectroscopy (IS) measurements we investigate the response of conductivity versus incremental pressure increase by a piston-cylinder-type high pressure cell up to 1 GPa for some lithium conducting ceramics: LATP (Li1.3Al0.3Ti1.7(PO4)3), LLTO (Li5La3Ta2O12), LLT (Li0.33La0.55TiO3), LAGP (Li1.5Al0.5Ge1.5P3O12) and LLZO (Li7La3Zr2O12) for non-annealed and annealed samples.Isothermal, incremental pressure increase of powders allows for an in situ observation of the transition state conditions of poorly consolidated ceramic powders and the effects on grain boundary conditions prior to sintering. Specific conductance (σb) increased by several orders of magnitude in some samples, approaching 10-3 S∙cm-1, yet decreased in other samples. The affect of grain boundaries and affects of bulk capacitance as the sample dimensions are altered due to pressure, are attributed to some of this behavior and will be discussed. The understanding of some of these fundamental processes may be valuable in facilitating these and similar ceramics for use in commercial solid state battery systems.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3056
Author(s):  
Andrzej Nowakowski

This work discusses the results of a study of the influence of rates of change of confining pressure on the result of a drained compressibility tests intended to determine the modulus of compressibility of a rock skeleton Ks. A series of cyclical compressibility tests was performed on samples of sandstone soaked in kerosene, for various rates of compression and decompression of the pressure liquid filling the cell and the pore volume of the sample. The studies showed that the deformability of the tested sample was directly proportional to the rate of change of the confining pressure. As a consequence, the value of the Ks modulus and Biot coefficient α decreased with increasing sample load rate. This phenomenon should be attributed primarily to equilibration of the liquid pressure inside the high-pressure cell with the liquid pressure in the sample pore space, caused by filtration of the pore liquid. These phenomena prove that the filtration process impacts the values of the modulus of compressibility of the rock skeleton Ks and of Biot coefficient α determined on the basis of the experiment. This is significant in the context of the use of Biot equations as constitutive equations for a porous rock medium.


Separations ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Hiroki Sakai ◽  
Kento Ono ◽  
Shinichi Tokunaga ◽  
Tanjina Sharmin ◽  
Taku Michael Aida ◽  
...  

In this work, a carbon dioxide-expanded liquid (CXL) extraction system was used with or without direct sonication for the extraction of highly polar natural pigments (crocin-1 and crocin-2) from Gardenia jasminoides Ellis fruit pulp. The effects of different parameters, including modifiers (ethanol, water, aqueous ethanol), temperature (5–25 °C), pressure (8–14 MPa), and sonication time (0–200 s) on extraction concentrations were examined using the CXL system. Aqueous ethanol (50% or 80%, v/v) was selected for the CXL system as a modifier due to its efficiency. The best conditions for extraction were found at 25 °C and 10 MPa. The CXE 80% extraction system with direct sonication extracted a significantly higher amount of crocin-1 and crocin-2, 13.63 ± 0.5 and 0.51 ± 0.05 μg/mL, respectively, compared to conventional solid–liquid methanol extraction (10.43 ± 0.3 and 0.37 ± 0.02 μg/mL, respectively). Under these conditions, a water-rich phase, an ethanol-rich phase, and a CO2-rich gas phase coexisted in the high-pressure cell in the CXE 80% extraction system, which was vigorously disrupted by the addition of sonication, resulting in a compressed aqueous ethanol phase and an aqueous ethanol-modified CO2-rich phase, and may have a positive influence on extraction.


2020 ◽  
Vol 91 (11) ◽  
pp. 115103 ◽  
Author(s):  
Judith M. Schicks ◽  
Mengdi Pan ◽  
Ronny Giese ◽  
Mathias Poser ◽  
Nur Aminatulmimi Ismail ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 715 ◽  
Author(s):  
Yuliya V. Bataleva ◽  
Aleksei N. Kruk ◽  
Ivan D. Novoselov ◽  
Olga V. Furman ◽  
Yuri N. Palyanov

An experimental study aimed at the modeling of dolomite- and ankerite-involving decarbonation reactions, resulting in the CO2 fluid release and crystallization of Ca, Mg, Fe garnets, was carried out at a wide range of pressures and temperatures of the upper mantle. Experiments were performed using a multi-anvil high-pressure apparatus of a “split-sphere” type, in CaMg(CO3)2-Al2O3-SiO2 and Ca(Mg,Fe)(CO3)2-Al2O3-SiO2 systems (pressures of 3.0, 6.3 and 7.5 GPa, temperature range of 950–1550 °C, hematite buffered high-pressure cell). It was experimentally shown that decarbonation in the dolomite-bearing system occurred at 1100 ± 20 °C (3.0 GPa), 1320 ± 20 °C (6.3 GPa), and 1450 ± 20 °C (7.5 GPa). As demonstrated by mass spectrometry, the fluid composition was pure CO2. Composition of synthesized garnet was Prp83Grs17, with main Raman spectroscopic modes at 368–369, 559–562, and 912–920 cm−1. Decarbonation reactions in the ankerite-bearing system were realized at 1000 ± 20 °C (3.0 GPa), 1250 ± 20 °C (6.3 GPa), and 1400 ± 20 °C (7.5 GPa). As a result, the garnet of Grs25Alm40Prp35 composition with main Raman peaks at 349–350, 552, and 906–907 cm−1 was crystallized. It has been experimentally shown that, in the Earth’s mantle, dolomite and ankerite enter decarbonation reactions to form Ca, Mg, Fe garnet + CO2 assemblage at temperatures ~175–500 °C lower than CaCO3 does at constant pressures.


Sign in / Sign up

Export Citation Format

Share Document