Effect of n-GaN thickness on internal quantum efficiency in InxGa1-xN multiple-quantum-well light emitting diodes grown on Si (111) substrate

2011 ◽  
Vol 109 (11) ◽  
pp. 113537 ◽  
Author(s):  
L. Lu ◽  
Y. H. Zhu ◽  
Z. T. Chen ◽  
T. Egawa
2016 ◽  
Vol 24 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Q. Zhou ◽  
M. Xu ◽  
H. Wang

In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called “green gap”. This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.


2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


2003 ◽  
Vol 42 (Part 2, No. 3A) ◽  
pp. L226-L228 ◽  
Author(s):  
Baijun Zhang ◽  
Takashi Egawa ◽  
Hiroyasu Ishikawa ◽  
Yang Liu ◽  
Takashi Jimbo

Sign in / Sign up

Export Citation Format

Share Document