Non-proportional∕Non-monotonous Deformation Modeling of an Ultra High Strength Automotive Steel Sheet

2011 ◽  
Author(s):  
Rahul K. Verma ◽  
Yuki Ogihara ◽  
Toshihiko Kuwabara ◽  
Kwansoo Chung
Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract USS Dual Phase 80 is a high-strength steel sheet which has a dual phase structure of martensite and ferrite. It provides all the benefits of higher strength with little sacrifice in ductility, formability or weldability. Dual Phase 80 gains strength as it is formed through rapid work hardening of its unique microstructure; in fact, it increases from its delivered yield strength of 50,000 psi up to 80,000 psi (or more) in forming. Its final strength depends on the amount of forming. Its many applications include automotive vehicles, farm equipment and heavy construction equipment. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-352. Producer or source: United States Steel Corporation.


2021 ◽  
Vol 162 ◽  
pp. 107584
Author(s):  
Wenying Zhang ◽  
Xiangzhi Xu ◽  
Yang Liu ◽  
Cheng Yu ◽  
Xuechun Liu ◽  
...  

2011 ◽  
Vol 410 ◽  
pp. 232-235 ◽  
Author(s):  
Sansot Panich ◽  
Vitoon Uthaisangsuk ◽  
Surasak Suranuntchai ◽  
Suwat Jirathearanat

Anisotropic plastic behavior of advanced high strength steel sheet of grade TRIP780 (Transformation Induced Plasticity) was investigated using three different yield functions, namely, the von Mises’s isotropic, Hill’s anisotropic (Hill’48), and Barlat’s anisotropic (Yld2000-2d) criterion. Uniaxial tensile and balanced biaxial test were conducted for the examined steel in order to characterize flow behavior and plastic anisotropy for different stress states. Especially, disk compression test was performed for obtaining balanced r-value. All these data were used to determine the anisotropic coefficients. As a result, yield stresses and r-values for different directions were calculated according to these yield criteria. The results were compared with experimental data. To verify the modelling accuracy, tensile tests of various notched samples were carried out and stress-strain distributions in the critical area were characterized. By this manner, the effect of stress triaxiality due to different notched shapes on the strain localization calculated by the investigated yield criteria could be studied.


Author(s):  
Mei Zhang ◽  
Shaoli Fang ◽  
Anvar A. Zakhidov ◽  
Sergey B. Lee ◽  
Ali E. Aliev ◽  
...  

We demonstrate carbon nanotube assembly by cooperatively rotating carbon nanotubes in vertically-oriented nanotube arrays (forests) and make 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of high strength steel sheet.


Sign in / Sign up

Export Citation Format

Share Document