scholarly journals Erratum: “Signal-to-noise ratio in x-ray dark-field imaging using a grating interferometer” [J. Appl. Phys. 110, 053105 (2011)]

2011 ◽  
Vol 110 (10) ◽  
pp. 109902 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  
2011 ◽  
Vol 110 (5) ◽  
pp. 053105 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  

2008 ◽  
Vol 7 (2) ◽  
pp. 134-137 ◽  
Author(s):  
F. Pfeiffer ◽  
M. Bech ◽  
O. Bunk ◽  
P. Kraft ◽  
E. F. Eikenberry ◽  
...  

2010 ◽  
Vol 20 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Martin Bech ◽  
Torben H. Jensen ◽  
Oliver Bunk ◽  
Tilman Donath ◽  
Christian David ◽  
...  

2020 ◽  
Vol 28 (13) ◽  
pp. 19187 ◽  
Author(s):  
Amogha Pandeshwar ◽  
Matias Kagias ◽  
Zhentian Wang ◽  
Marco Stampanoni

Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas P. Sauter ◽  
Jana Andrejewski ◽  
Manuela Frank ◽  
Konstantin Willer ◽  
Julia Herzen ◽  
...  

AbstractGrating-based X-ray dark-field imaging is a novel imaging modality with enormous technical progress during the last years. It enables the detection of microstructure impairment as in the healthy lung a strong dark-field signal is present due to the high number of air-tissue interfaces. Using the experience from setups for animal imaging, first studies with a human cadaver could be performed recently. Subsequently, the first dark-field scanner for in-vivo chest imaging of humans was developed. In the current study, the optimal tube voltage for dark-field radiography of the thorax in this setup was examined using an anthropomorphic chest phantom. Tube voltages of 50–125 kVp were used while maintaining a constant dose-area-product. The resulting dark-field and attenuation radiographs were evaluated in a reader study as well as objectively in terms of contrast-to-noise ratio and signal strength. We found that the optimum tube voltage for dark-field imaging is 70 kVp as here the most favorable combination of image quality, signal strength, and sharpness is present. At this voltage, a high image quality was perceived in the reader study also for attenuation radiographs, which should be sufficient for routine imaging. The results of this study are fundamental for upcoming patient studies with living humans.


2022 ◽  
Vol 93 (1) ◽  
pp. 015006
Author(s):  
Xiaolong Zhao ◽  
Ming Ye ◽  
Zhi Cao ◽  
Danyang Huang ◽  
Tingting Fan ◽  
...  

2019 ◽  
pp. 75-96
Author(s):  
Deniz A. Bölükbas ◽  
Darcy E. Wagner

Sign in / Sign up

Export Citation Format

Share Document