Transport coefficients of dense fluids composed of globular molecules. Equilibrium molecular dynamics investigations using more‐center Lennard‐Jones potentials

1988 ◽  
Vol 89 (5) ◽  
pp. 3195-3202 ◽  
Author(s):  
C. Hoheisel
1986 ◽  
Vol 64 (7) ◽  
pp. 773-781 ◽  
Author(s):  
D. M. Heyes

New nonequilibrium molecular dynamics (MD) calculations of the shear viscosity, bulk viscosity, and thermal conductivity are presented. Together with the self-diffusion coefficients obtained from equilibrium MD, the success of the Dymond–Batchinski expressions for the density and temperature dependence of these transport coefficients is demonstrated.The shear viscosity and self-diffusion coefficients are very good probes for the approach point of the solid-to-liquid phase change. The bulk viscosity and thermal conductivity are less useful in this respect.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


Sign in / Sign up

Export Citation Format

Share Document