mixing and transport
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 105 (1) ◽  
pp. 509-516
Author(s):  
Martin Mačák ◽  
Petr Vyroubal

The presented article describes a simulation of an electrochemical reaction in a presence of a magnetic field using a custom model implemented into Ansys Fluent. The influence of electrode size and the effect of scan rate is investigated further. The results show that the magnetic field can significantly increase mixing and transport of species towards the electrode, which results in higher obtained current densities. Additionally, this method can be used to control fluid flow in microfluidic devices.


2021 ◽  
Vol 118 (40) ◽  
pp. e2108548118
Author(s):  
Ranjiangshang Ran ◽  
Quentin Brosseau ◽  
Brendan C. Blackwell ◽  
Boyang Qin ◽  
Rebecca L. Winter ◽  
...  

Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimming Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.


Author(s):  
RAVI KANT AVVARI

In this paper, effects of stationary contraction on mixing and transport of a non-Newtonian fluid in the small intestine are analyzed theoretically. A semi-analytical method is developed to solve the governing equations of fluids flow in the intestine using lubrication theory. Results indicate that the stationary contraction helps in conferring two functions – (1) shearing of the contents, and (2) bidirectional transport over a short distance. The flow resulting from contraction is symmetric and occurs in both the directions; however, they do not lead to a net flow rate in one direction. The amount of shearing developed during such flows is reflective of their mixing ability. The effort of such peristalsis is largely determined by the flow behavior index; where energy requirements of developing similar shearing forces are higher for dilatants and lower for pseudoplastics. Flow is sensitive to frequency of contraction, luminal occlusion and wavelength of the contraction.


2021 ◽  
Author(s):  
Sam Hartharn-Evans ◽  
Magda Carr ◽  
Marek Stastna ◽  
Peter Davies

<p>Shoaling is a key mechanism by which Internal Solitary Waves (ISWs) dissipate energy, induce mixing, and transport sediment. Past studies of shoaling ISWs in a three-layer stratification (with homogeneous upper and lower layers separated by a thin pycnocline layer) have identified a classification system where waves over the shallowest slopes undergo fission, whilst over steeper slopes, the breaking type changes from surging, through collapsing to plunging as a function of increasing internal Irribaren number (Ir) defined with the topographic slope, s, and the incident wave’s amplitude and wavelength, A<sub>w</sub> and L<sub>w </sub>respectively, as <img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.9fb46536f70067154311161/sdaolpUECMynit/12UGE&app=m&a=0&c=d84eaf790c6586a46ed8fca09040fcd7&ct=x&pn=gnp.elif&d=1" alt="" width="117" height="24">. Here, a combined numerical and laboratory study extends this prior work into new stratifications, representing the diversity of ocean structures across the world. Numerical results were able to successfully reproduce past studies in the three-layer stratification, and those in the two-layer stratification in the laboratory. Where a linear stratified layer overlays a homogeneous lower layer (two-layer stratification), it is found that plunging dynamics are inhibited by the density gradient throughout the upper layer, instead forming collapsing-type breakers. In numerical experiments, where the density gradient is continuous throughout the full water column (linear stratification), not only are the plunging dynamics inhibited, but the density gradient at the bottom boundary also prevents the formation of collapsing dynamics, instead all waves in this stratification either fission, or form surging breakers. Where the wave steepness is particularly high in the linear stratification, the upslope bolus formed by surging was unstable, and Kelvin-Helmholtz instabilities were observed on the upper boundary of the bolus, dynamics not previously observed in the literature. These results indicate the importance of using representative stratifications in laboratory and numerical studies of ISW behaviours.</p>


2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Hanliang Guo ◽  
Hai Zhu ◽  
Shravan Veerapaneni

Sign in / Sign up

Export Citation Format

Share Document