A systematic study on the basis set superposition error in the calculation of interaction energies of systems of biological interest

1989 ◽  
Vol 90 (11) ◽  
pp. 6361-6370 ◽  
Author(s):  
J. A. Sordo ◽  
T. L. Sordo ◽  
G. M. Fernández ◽  
R. Gomperts ◽  
S. Chin ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5487
Author(s):  
Rodrigo A. Lemos Silva ◽  
Demetrio A. da Silva Filho ◽  
Megan E. Moberg ◽  
Ted M. Pappenfus ◽  
Daron E. Janzen

X-ray structural determinations and computational studies were used to investigate halogen interactions in two halogenated oxindoles. Comparative analyses of the interaction energy and the interaction properties were carried out for Br···Br, C-H···Br, C-H···O and N-H···O interactions. Employing Møller–Plesset second-order perturbation theory (MP2) and density functional theory (DFT), the basis set superposition error (BSSE) corrected interaction energy (Eint(BSSE)) was determined using a supramolecular approach. The Eint(BSSE) results were compared with interaction energies obtained by Quantum Theory of Atoms in Molecules (QTAIM)-based methods. Reduced Density Gradient (RDG), QTAIM and Natural bond orbital (NBO) calculations provided insight into possible pathways for the intermolecular interactions examined. Comparative analysis employing the electron density at the bond critical points (BCP) and molecular electrostatic potential (MEP) showed that the interaction energies and the relative orientations of the monomers in the dimers may in part be understood in light of charge redistribution in these two compounds.


1988 ◽  
Vol 53 (10) ◽  
pp. 2214-2229 ◽  
Author(s):  
Małgorzata M. Szczęśniak ◽  
Steve Scheiner

High-quality Gaussian basis sets of the well-tempered type, containing three sets of polarization functions on all atoms, are used to investigate the interaction of Li+ with HF, OH2, and NH3. These sets reproduce the SCF and MP2 energies of the various monomers very well and, moreover, accurately treat the multipole moments and polarizabilities of the monomers. When applied to the complexes, the sets are essentially free of primary and secondary basis set superposition error at the SCF level; MP2 extension effects are also completely negligible while basis set superposition effects are small but non-negligible. Analysis of the correlation corrections to the molecular properties, coupled with comparison of the interaction of the bases with a point charge, provides a straightforward explanation of correlation contributions to the interaction energy. Recommendations are provided to guide selection of basis sets for molecular interactions so as to avoid distortion of the various components.


2013 ◽  
Vol 78 (7) ◽  
pp. 959-971
Author(s):  
Lijuan Yang ◽  
Yi Zhao ◽  
Wei Sun

1-(4-propylamino)-3-ethyl imidazolium ([Paeim]+) Tetrafluoroborate([BF4]-) Ionic liquid (IL), capturing CO2, was explored systematically at B3LYP/6-311++G** and mp2/6-311++G** level. The stable geometries of ILs and capture products were optimized, the energies of these geometries were obtained and corrected by Zero-point-vibration-energy and basis set superposition error correction. The results show that the interactions between [Paeim]+and [BF4]-are mainly displayed as hydrogen bonds, but the interaction energies exceeds -328 kJ/mol. Further analysis found that the interactions are reinforced by charge dispersion and charge redistribution of ion-pair, and that electrostatic attraction contributes much to the interaction energies. This IL system capturing CO2belongs to the class of physical sorption with 1:1 molar absorption ratio, the absorption energy is nearly -18kJ/moland thus this IL may have low energy consumption when regenerated from IL-CO2.


Sign in / Sign up

Export Citation Format

Share Document