Some stability properties for impulsive differential equations with respect to initial time difference

2012 ◽  
Author(s):  
S. G. Hristova
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Peiguang Wang ◽  
Xiaowei Liu

This paper establishes variation of parameters formula for impulsive differential equations with initial time difference. As an application, one of the results is used to investigate stability properties of solutions.


2017 ◽  
Vol 24 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Donal O’Regan ◽  
Snezhana Hristova

AbstractThe strict stability properties are generalized to nonlinear Caputo fractional differential equations in the case when both initial points and initial times are changeable. Using Lyapunov functions, some criteria for strict stability, eventually strict stability and strict practical stability are obtained. A brief overview of different types of derivatives in the literature related to the application of Lyapunov functions to Caputo fractional equations are given, and their advantages and disadvantages are discussed with several examples. The Caputo fractional Dini derivative with respect to to initial time difference is used to obtain some sufficient conditions.


2018 ◽  
Vol 21 (1) ◽  
pp. 72-93 ◽  
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

Abstract Lipschitz stability and Mittag-Leffler stability with initial time difference for nonlinear nonautonomous Caputo fractional differential equation are defined and studied using Lyapunov like functions. Some sufficient conditions are obtained. The fractional order extension of comparison principles via scalar fractional differential equations with a parameter is employed. The relation between both types of stability is discussed theoretically and it is illustrated with examples.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Coşkun Yakar

The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.


Sign in / Sign up

Export Citation Format

Share Document