nonlinear variation
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yunfei Zhou ◽  
Li Yan

This paper focuses on the external environmental capacity of the coevolution system of the manufacturing industry and logistics industry. This paper first constructs a dynamic model of the external environmental capacity of the coevolution system by using the logistic model and then simulates the effects of two factors: one factor is the institutional environment affected by the random interference factors of policy and the other factor is the industrial environment affected by the random interference factors of the industrial economy on the coevolution system. This paper discusses the cooperative mechanism of external random interference factors on system evolution, analyzes the nonlinear variation of external environmental factors with time, and gives the estimation method. Finally, we provide an example to prove our findings.


2021 ◽  
Vol 13 (3) ◽  
pp. 821-832
Author(s):  
S. Kumari ◽  
T. K. Rawat ◽  
S. P. Singh

The present article deals with variable viscosity on the peristaltic transport of bile in an inclined duct under the action of slip boundary conditions. The wall geometry is described by the sinusoidal wave propagating in the axial direction with different amplitude and with constant speed. The flow of fluid is examined in a wave frame of reference, moving with the velocity of the wave.  Mathematical modeling of the problem includes equations of motion and continuity. The fluid flow is investigated by converting the equations into a non-dimensionalized form simplified considering long wavelength and low Reynolds number approximation. The analytic expressions for axial velocity, pressure gradient, and pressure rise over a single wavelength cycle are obtained. The impact of various parameters such as slip parameter, viscosity parameter, angle of inclination, gravity parameter and amplitude ratio on axial velocity, pressure gradient and pressure rise are discussed in detail by plotting graphs in MATLAB R2018b software. In this article, a comparison of linear and nonlinear variation of viscosity of bile has been made. It is concluded that velocity and pressure rise is more in case linear variation of viscosity, whereas more pressure gradient is required in case of nonlinear variation of viscosity.


Author(s):  
Sandeep Kumar Paul ◽  
Manoj Sahni

In this paper, a functionally graded thick hollow sphere is considered for the analysis of two-dimensional steady state mechanical stress in the radial and circumferential directions under mechanical loading. Modulus of elasticity is varying with continuous nonlinear variation along the radial direction and Poisson’s ratio is kept as constant. The Legendre series and Euler differential equation are used to solve Navier equations. Geometry of the sphere is assumed in spherical coordinate system. Applying mechanical boundary conditions at inner and outer radii, we have carried out the analytical solutions for stresses, strains and displacements. In the numerical example, only internal pressure is varying along circumferential direction and external pressure is kept as zero. Displacements and mechanical stresses are presented graphically and the results are discussed numerically.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4175
Author(s):  
Shuangshuang Shi ◽  
Yanlin Ge ◽  
Lingen Chen ◽  
Huijun Feng

Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal.


2021 ◽  
Vol 14 (3) ◽  
pp. 2529-2542
Author(s):  
Peng Sun ◽  
Suqin Wu ◽  
Kefei Zhang ◽  
Moufeng Wan ◽  
Ren Wang

Abstract. Global navigation satellite systems (GNSS) have been proved to be an excellent technology for retrieving precipitable water vapor (PWV). In GNSS meteorology, PWV at a station is obtained from a conversion of the zenith wet delay (ZWD) of GNSS signals received at the station using a conversion factor which is a function of weighted mean temperature (Tm) along the vertical direction in the atmosphere over the site. Thus, the accuracy of Tm directly affects the quality of the GNSS-derived PWV. Currently, the Tm value at a target height level is commonly modeled using the Tm value at a specific height and a simple linear decay function, whilst the vertical nonlinear variation in Tm is neglected. This may result in large errors in the Tm result for the target height level, as the variation trend in the vertical direction of Tm may not be linear. In this research, a new global grid-based Tm empirical model with a horizontal resolution of 1∘ × 1∘ , named GGNTm, was constructed using ECMWF ERA5 monthly mean reanalysis data over the 10-year period from 2008 to 2017. A three-order polynomial function was utilized to fit the vertical nonlinear variation in Tm at the grid points, and the temporal variation in each of the four coefficients in the Tm fitting function was also modeled with the variables of the mean, annual, and semi-annual amplitudes of the 10-year time series coefficients. The performance of the new model was evaluated using its predicted Tm values in 2018 to compare with the following two references in the same year: (1) Tm from ERA5 hourly reanalysis with the horizontal resolution of 5∘ × 5∘; (2) Tm from atmospheric profiles from 428 globally distributed radiosonde stations. Compared to the first reference, the mean RMSEs of the model-predicted Tm values over all global grid points at the 950 and 500 hPa pressure levels were 3.35 and 3.94 K, respectively. Compared to the second reference, the mean bias and mean RMSE of the model-predicted Tm values over the 428 radiosonde stations at the surface level were 0.34 and 3.89 K, respectively; the mean bias and mean RMSE of the model's Tm values over all pressure levels in the height range from the surface to 10 km altitude were −0.16 and 4.20 K, respectively. The new model results were also compared with that of the GTrop and GWMT_D models in which different height correction methods were also applied. Results indicated that significant improvements made by the new model were at high-altitude pressure levels; in all five height ranges, GGNTm results were generally unbiased, and their accuracy varied little with height. The improvement in PWV brought by GGNTm was also evaluated. These results suggest that considering the vertical nonlinear variation in Tm and the temporal variation in the coefficients of the Tm model can significantly improve the accuracy of model-predicted Tm for a GNSS receiver that is located anywhere below the tropopause (assumed to be 10 km), which has significance for applications requiring real-time or near real-time PWV converted from GNSS signals.


2021 ◽  
Vol 15 ◽  
pp. 174830262110084
Author(s):  
Jingsen Liu ◽  
Hongyuan Ji ◽  
Qingqing Liu ◽  
Yu Li

In order to improve the convergence speed and optimization accuracy of the bat algorithm, a bat optimization algorithm with moderate optimal orientation and random perturbation of trend is proposed. The algorithm introduces the nonlinear variation factor into the velocity update formula of the global search stage to maintain a high diversity of bat populations, thereby enhanced the global exploration ability of the algorithm. At the same time, in the local search stage, the position update equation is changed, and a strategy that towards optimal value modestly is used to improve the ability of the algorithm to local search for deep mining. Finally, the adaptive decreasing random perturbation is performed on each bat individual that have been updated in position at each generation, which can improve the ability of the algorithm to jump out of the local extremum, and to balance the early global search extensiveness and the later local search accuracy. The simulating results show that the improved algorithm has a faster optimization speed and higher optimization accuracy.


Sign in / Sign up

Export Citation Format

Share Document