Chiral symmetry breaking in the presence of a magnetic field at finite temperature and chemical potential

2013 ◽  
Author(s):  
Pablo G. Allen ◽  
Norberto N. Scoccola
1993 ◽  
Vol 08 (07) ◽  
pp. 1295-1312 ◽  
Author(s):  
D. EBERT ◽  
YU. L. KALINOVSKY ◽  
L. MÜNCHOW ◽  
M.K. VOLKOV

An extended NJL model with [Formula: see text] and (qq)-interactions is studied at finite temperature and baryon number density. We investigate the chiral symmetry breaking, its restoration and the behavior of meson and diquark masses, decay and coupling constants as functions of T and µ.


2020 ◽  
Vol 128 (6) ◽  
pp. 61001 ◽  
Author(s):  
Diego M. Rodrigues ◽  
Danning Li ◽  
Eduardo Folco Capossoli ◽  
Henrique Boschi-Filho

1996 ◽  
Vol 11 (10) ◽  
pp. 785-793 ◽  
Author(s):  
SHINYA KANEMURA ◽  
HARU-TADA SATO

We discuss phase structure of chiral symmetry breaking of the D-dimensional (2≤D≤3) Gross–Neveu model at finite temperature, density and constant curvature. We evaluate the effective potential in a weak background approximation to thermalize the model as well as in the leading order of the 1/N-expansion. A third-order critical line is observed similarly to the D=2 case.


Author(s):  
Orlando Oliveira ◽  
Paulo J. Silva

Abstract The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $$T_c$$Tc and for the various Matsubara frequencies. Significant differences between the functional behaviour below and above $$T_c$$Tc are observed both for the quark wave function and the running quark mass. The results for the running quark mass indicate a link between gluon dynamics, the mechanism for chiral symmetry breaking and the deconfinement mechanism. For temperatures above $$T_c$$Tc and for low momenta, our results support also a description of quarks as free quasiparticles.


Sign in / Sign up

Export Citation Format

Share Document