scholarly journals APPROACH TO D-DIMENSIONAL GROSS–NEVEU MODEL AT FINITE TEMPERATURE AND CURVATURE

1996 ◽  
Vol 11 (10) ◽  
pp. 785-793 ◽  
Author(s):  
SHINYA KANEMURA ◽  
HARU-TADA SATO

We discuss phase structure of chiral symmetry breaking of the D-dimensional (2≤D≤3) Gross–Neveu model at finite temperature, density and constant curvature. We evaluate the effective potential in a weak background approximation to thermalize the model as well as in the leading order of the 1/N-expansion. A third-order critical line is observed similarly to the D=2 case.

1995 ◽  
Vol 10 (24) ◽  
pp. 1777-1785 ◽  
Author(s):  
SHINYA KANEMURA ◽  
HARU-TADA SATO

We discuss a phase structure of chiral symmetry breaking in the Gross-Neveu model at finite temperature, density and constant curvature. The effective potential is evaluated in the leading order of the 1/N-expansion and in a weak curvature approximation. The third-order critical line is found on the critical surface in the parameter space of temperature, chemical potential and constant curvature.


1996 ◽  
Vol 11 (39n40) ◽  
pp. 3091-3102 ◽  
Author(s):  
H.-T. SATO ◽  
H. TOCHIMURA

We illustrate the phase structure of a deformed two-dimensional Gross–Neveu model which is defined by undeformed field contents plus deformed Pauli matrices. This deformation is based on two motives to find a more general polymer model and to estimate how q-deformed field theory affects on its effective potential. Some regions where chiral symmetry breaking and restoration take place repeatedly as temperature increasing are found.


1997 ◽  
Vol 12 (30) ◽  
pp. 2271-2277 ◽  
Author(s):  
I. L. Buchbinder ◽  
T. Inagaki ◽  
S. D. Odintsov

We investigate the effect of an external gravitational fields to the chiral symmetry breaking in the supersymmetric (SUSY) Nambu–Jona-Lasinio (NJL) model coupled to gravity in a non-supersymmetric way. Evaluating the effective potential in the leading order of the 1/Nc-expansion and in the linear curvature approximation, it is possible to have the chiral symmetry breaking in the SUSY NJL model in an external gravitational fields. In the broken phase the dynamically generated mass is analytically and numerically calculated.


1989 ◽  
Vol 04 (07) ◽  
pp. 605-612 ◽  
Author(s):  
M. INOUE ◽  
T. MUTA ◽  
T. OCHIUMI

On the basis of Bethe-Salpeter equations for electron-positron bound states in strong-coupling quantum electrodynamics with additional four-fermion interactions, the formula for the critical line dividing the chiral-symmetry-breaking phase from the symmetric phase is derived. The beta functions near the critical line are calculated explicitly and the phase structure is discussed based on these beta functions.


1993 ◽  
Vol 08 (07) ◽  
pp. 1295-1312 ◽  
Author(s):  
D. EBERT ◽  
YU. L. KALINOVSKY ◽  
L. MÜNCHOW ◽  
M.K. VOLKOV

An extended NJL model with [Formula: see text] and (qq)-interactions is studied at finite temperature and baryon number density. We investigate the chiral symmetry breaking, its restoration and the behavior of meson and diquark masses, decay and coupling constants as functions of T and µ.


2022 ◽  
Vol 258 ◽  
pp. 10006
Author(s):  
Juan L. Mañes ◽  
Eugenio Megías ◽  
Manuel Valle ◽  
Miguel Á. Vázquez-Mozo

We study the constitutive relations of a chiral hadronic fluid in presence of non-Abelian’t Hooft anomalies. Analytical expressions for the covariant currents are obtained at first order in derivatives in the chiral symmetric phase, for both two and three quark flavors in the presence of chiral imbalance. We also investigate the constitutive relations after chiral symmetry breaking at the leading order.


Author(s):  
Orlando Oliveira ◽  
Paulo J. Silva

Abstract The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $$T_c$$Tc and for the various Matsubara frequencies. Significant differences between the functional behaviour below and above $$T_c$$Tc are observed both for the quark wave function and the running quark mass. The results for the running quark mass indicate a link between gluon dynamics, the mechanism for chiral symmetry breaking and the deconfinement mechanism. For temperatures above $$T_c$$Tc and for low momenta, our results support also a description of quarks as free quasiparticles.


Sign in / Sign up

Export Citation Format

Share Document