Control of the quantum interference in a superconducting qubit system

2013 ◽  
Vol 114 (16) ◽  
pp. 164902
Author(s):  
Hao Ying ◽  
Da-Wei Luo ◽  
Jing-Bo Xu
2011 ◽  
Vol 28 (5) ◽  
pp. 050308 ◽  
Author(s):  
Li-Jun Tian ◽  
Li-Guo Qin ◽  
Hong-Biao Zhang

2008 ◽  
Vol 8 (1&2) ◽  
pp. 12-29
Author(s):  
E.C. Behrman ◽  
J.E. Steck ◽  
P. Kumar ◽  
K.A. Walsh

We present a dynamic learning paradigm for ``programming'' a general quantum computer. A learning algorithm is used to find the control parameters for a coupled qubit system, such that the system at an initial time evolves to a state in which a given measurement corresponds to the desired operation. This can be thought of as a quantum neural network. We first apply the method to a system of two coupled superconducting quantum interference devices (SQUIDs), and demonstrate learning of both the classical gates XOR and XNOR. Training of the phase produces a gate similar to the CNOT. Striking out for somewhat more interesting territory, we attempt learning of an entanglement witness for a two qubit system. Simulation shows a reasonably successful mapping of the entanglement at the initial time onto the correlation function at the final time for both pure and mixed states. For pure states this mapping requires knowledge of the phase relation between the two parts; however, given that knowledge, this method can be used to measure the entanglement of an otherwise unknown state. The method is easily extended to multiple qubits or to quNits.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ming Gong ◽  
Xueda Wen ◽  
Guozhu Sun ◽  
Dan-Wei Zhang ◽  
Dong Lan ◽  
...  

2021 ◽  
Vol 15 (6) ◽  
Author(s):  
Zhiwen Zong ◽  
Zhenhai Sun ◽  
Zhangjingzi Dong ◽  
Chongxin Run ◽  
Liang Xiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document