scholarly journals Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

2014 ◽  
Vol 26 (11) ◽  
pp. 113303 ◽  
Author(s):  
Jean-Pierre Minier ◽  
Sergio Chibbaro ◽  
Stephen B. Pope
Author(s):  
Benny T. Kuan ◽  
M. Philip Schwarz

Single-phase and two-phase (gas-solid) turbulent flow calculations are performed for 90° duct bends having radii of curvature ranging from 1.5 to 2.0 duct diameter, and with either a square or circular cross-section. The considered flow Reynolds number is between 6×104 and 3×105, and the particulate flows examined pertain to two different solid mass loading ratios: 1.5×10−4 and 0.33. Numerous turbulence models have been utilized to simulate the turbulent fluid motion within the duct bend while particle trajectories are calculated on the basis of a Lagrangian approach. Reasonable agreement with the experimental data is achieved for the continuous phase in the cases tested. In contrast, significant disparities with the measurements arise in particle tracking calculations, especially in regions where particle rope dispersion is predominant. Results of this investigation indicate the need for more experimental testing of mill-duct flows of similar configuration in order to facilitate a better understanding and modeling of strongly curved gas-solid duct flows.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Tat Thang Nguyen ◽  
Hiroshige Kikura ◽  
Ngoc Hai Duong ◽  
Hideki Murakawa ◽  
Nobuyoshi Tsuzuki

Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended.


Sign in / Sign up

Export Citation Format

Share Document