ultrasonic time
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 81)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 904 ◽  
pp. 43-49
Author(s):  
Bai Xue Fu ◽  
Wei Wang ◽  
Zi Yuan Cheng ◽  
Yu Bao

Using ultrasonic time difference method to test automobile fuel consumption, the test accuracy mainly depends on the testing system timing accuracy and ultrasonic flow sensor output signal-to-noise ratio. At present, the timing accuracy of the single-chip can reach the level of picosecond, and the noise mixed in the output signal of the ultrasonic converter is the main factor affecting the accuracy of fuel consumption testing. When the receiving signal contains noise, it will cause the signal amplitude to fluctuate, making the measurement time error. The analysis of same-frequency noise, circuit noise and colored noise is carried out, and the feasible measures to eliminate noise are put forward to provide reference for accurate calculation of sound and development of high-precision automobile fuel consumption test instruments.


Author(s):  
Morgan Funderburk ◽  
Jamie Tran ◽  
Michael Todd ◽  
Anton Netchaev ◽  
Kenneth J Loh

Abstract Local scour is a growing cause of bridge failure in the United States and around the world. In the next century, the effects of climate changes will make more bridges susceptible to scour failure more than ever before. This study aims to harness the spatially continuous monitoring capabilities of ultrasonic time-domain reflectometry to detect a soil interface for the purposes of scour monitoring. In this study, a long, slender plate is coupled with two flexible piezoelectric devices that propagate Lamb waves along the length of the plate to form the scour sensor. The sensor was tested for sensitivity to external pressure using metal weights, and was able to detect the position of the pressure up at a length of up to ~ 20 feet. The sensor was tested under simulated scour conditions, being buried in sand at various depths. The results show that the Lamb wave scour sensor is capable of reliably detecting a soil interface at 1 ft intervals. The scour sensor was also able to detect uncompacted soil interfaces, which is important considering the issue of scour hole refill following an extreme event.


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 159
Author(s):  
Yujie Wang ◽  
Siyuan Luo ◽  
Jieling Luo ◽  
Jipeng Qu ◽  
Shiling Feng ◽  
...  

Hydroxytyrosol (HT) is the main bioactive compound in olive leaves. However, olive leaves contain a lower level of HT and the extraction process of HT was rarely optimized. In this study, compared with two extraction methods, ultrasound was found to have a positive effect on improving the yield of HT. Therefore, ultrasound was used to assist hydrolysis of hydrochloric acid to extract HT from olive leaves. Response surface method and macroporous resins were applied to optimize the extraction process as well as enrichment of HT. The results showed that ultrasonic extraction time had a significant effect on the yield and the optimal extraction conditions were obtained: ultrasonic time was 120 min, hydrochloric acid concentration was 1.60 mol/L and the liquid-to-material ratio was 60.00 mL/g. Under the optimal extraction condition, the yield of HT was 14.11 ± 0.12 mg/g. NKA-Ⅱ macroporous resin was proved to be a suitable resin to enrich HT from extraction solution. The optimal condition for enriching HY was 250 mL of loading solution at the flow rate of 1.5 mL/min with 40 mL volume of 75% ethanol–eluent at a flow rate of 1.0 mL/min. The concentration of HT changed from 2.27% to 9.25% after enrichment by macroporous resin.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huiwei Bao ◽  
Yang Xu ◽  
Yuejie Wang ◽  
Tao Zhang ◽  
Enpeng Wang ◽  
...  

To explore a green and efficient extraction technology for the extraction of active ingredients of Asarum, the deep eutectic solvent combined with ultrasonic was applied to compare the extraction efficiency of 10 kinds of deep eutectic solvents, taking the extraction rate of methyl eugenol and asarinin as indices. Single-factor experiments were adopted to investigate the influence of molar ratio, liquid-to-solid ratio, eddy time, ultrasonic time, and temperature of the deep eutectic solvent on the extraction rate of methyl eugenol and asarinin. Based on single-factor experiments, the surface response methodology was used to optimize the extraction process conditions. The results showed that the optimum extracting process conditions of methyl eugenol and asarinin in Asarum consisted of a ratio of choline chloride to glycerol of 1 : 3, a DES volume of 2 mL, an ultrasonic temperature of 60°C, an ultrasonic time of 30 min, and a vortex oscillation of 7 min. Under the optimum extracting process conditions, the contents of methyl eugenol and asarinin were 1.9428 mg/g and 0.9989 mg/g, respectively, and the comprehensive index was 2.3280 (RSD of 1.91%). The results were close to the predicted values of the response surface model, demonstrating the applicability of the model. The extraction rate of methyl eugenol and asarinin in Asarum by this method was higher than that of water extraction and alcohol extraction, which fully indicated the high efficiency of ultrasonic-assisted green deep eutectic solvent extraction technology. The results provide data support for further development and utilization of Asarum.


2021 ◽  
Vol 3 (8) ◽  
pp. 64-69
Author(s):  
Chengzhen Wu ◽  
◽  
Fu Fang ◽  
Pengfei Shi ◽  
Yilin Ning ◽  
...  

In recent years, nanofluid has gradually entered people's field of vision due to its unique cold storage performance. Hybrid nanofluid has a more prominent effect. In order to reduce the supercooling degree of the nanofluid and obtain a practical and effective method to reduce the supercooling degree, the nano-particle graphene oxide and Al2O3 are added into deionized water ultrasonically to configure the nanofluid, and then the temperature is cooled. The effect of nanofluid concentration and different initial fluid temperature on the nanofluid subcooling degree is obtained when the ultrasonic time is 120min; when the nanofluid concentration is 0.15%wt, the nanofluid subcooling degree is the lowest, and the nanofluid is supercooled at this time The temperature is 2.8°C, which is the optimal condition for undercooling research.


2021 ◽  
Vol 69 ◽  
pp. 53-66
Author(s):  
Novrita Idayanti ◽  
Dedi ◽  
Azwar Manaf

In this study, the particle sizes of SrFe12O19 in hard/soft SrFe12O19/CoFe2O4 nanocomposite magnets made using mechanical alloying and ultrasonic irradiation were investigated. SrFe12O19/CoFe2O4 nanocomposites were combined in a ratio of 75:25, with each magnetic material being prepared separately. SrFe12O19 powder was prepared from Fe2O3 and SrCO3 powder by mechanical alloying and ultrasonic irradiation for different times, 0, 3, 6, 9, and 12 h. Varying the ultrasonic time during the preparation of the SrFe12O19 samples resulted in differences in morphological characteristics, crystal structure, particle size, crystal size, microstrain, density, porosity, and magnetic properties. The longer the ultrasonic time, the crystal size and particle size decreases, the density increases, and the porosity reduction which affects the magnetic properties. SrFe12O19 after 12 h ultrasonic process reach Ms value = 61.29 emu/g. CoFe2O4 powder was produced from Fe2O3 and CoCO3 powder by mechanical alloying with a 10 h milling time. Furthermore, each SrFe12O19 sample was composited with CoFe2O4 powder by ultrasonic irradiation for 1 h and these composite samples also showed different characteristics, where there is an increase in Mr and Ms compared to the single SrFe12O19. The morphology, crystal structure, particle size, and magnetic properties of the samples were measured using scanning electron microscopy, X-ray diffraction, particle size analysis, and PERMAGRAPH. The crystal size and microstrain were calculated using a Williamson–Hall plot, and density and porosity were determined using Archimedes’ law.


2021 ◽  
Vol 11 (16) ◽  
pp. 7718
Author(s):  
Chunjian Zhao ◽  
Shen Li ◽  
Chunying Li ◽  
Tingting Wang ◽  
Yao Tian ◽  
...  

Flavonoid-rich leaves of the Ficus carica L. plant are usually discarded as waste. In this work, ultrasonic enzyme-assisted aqueous two-phase extraction (UEAATPE) was proposed as an innovative method to estimate the total flavonoids present in F. carica L. leaves. Total flavonoids were analyzed qualitatively and quantitatively by UPLC-QTOF-MS. At 38% (w/w) ethanol/18% (w/w) ammonium sulfate, we achieved the optimum conditions in which to establish an easy-to-form aqueous two-phase extraction (ATPE) as the final system. The optimal UEAATPE conditions were set at an enzymatic concentration of 0.4 U/g, 150 min enzymolysis time, an enzymolysis temperature of 50 °C, a liquid–solid ratio of 20:1 (mL/g), and 30 min ultrasonic time. The yields of the total flavonoids, i.e., 60.22 mg/g, obtained by UEAATPE were found to be 1.13-fold, 1.21-fold, 1.27-fold, and 2.43-fold higher than those obtained by enzyme-assisted ATPE (EAATPE), ultrasonic-assisted ATPE (UAATPE), ATPE, and soxhlet extraction (SE) methods, respectively. Furthermore, eleven flavonoids from the leaves of the F. carica L. plant were completely identified and fully characterized. Among them, ten flavonoids have been identified for the first time from the leaves of the F. carica L. plant. These flavonoids are quercetin 3-O-hexobioside-7-O-hexoside, 2-carboxyl-1,4-naphthohydroquinone-4-O-hexoside, luteolin 6-C-hexoside, 8-C-pentoside, kaempferol 6-C-hexoside-8-C-hexoside, quercetin 6-C-hexobioside, kaempferol 6-C-hexoside-8-C-hexoside, apigenin 2″-O-pentoside, apigenin 6-C-hexoside, quercetin 3-O-hexoside, and kaempferol 3-O-hexobioside. Therefore, F. carica L. leaves contain new kinds of unidentified natural flavonoids and are a rich source of biological activity. Therefore, this research has potential applications and great value in waste handling and utilization.


Sign in / Sign up

Export Citation Format

Share Document