scholarly journals Scaling and alpha-helix regulation of protein relaxation in a lipid bilayer

2014 ◽  
Vol 141 (22) ◽  
pp. 225101 ◽  
Author(s):  
Liming Qiu ◽  
Creighton Buie ◽  
Kwan Hon Cheng ◽  
Mark W. Vaughn
2020 ◽  
Vol 16 (7) ◽  
pp. 1135-1143
Author(s):  
Ting Wang ◽  
Chu Wang ◽  
Size Zheng ◽  
Guanwen Qu ◽  
Zhangqi Feng ◽  
...  

Different secondary structures of the pep-1 protein were blamed for transmembrane internalization process of drugs and drug deliveries. But which structure will be important for transmembrane delivery was still not clear. In this study, interactions between pep-1 and cell membranes were studied. Pep-1 in the buffer (Pep-1) and pep-1 on graphene (PDS/G) or they on graphene oxide (PDS/GO) were composed as the transmembrane delivery system to study the different secondary structure of pep-1 that influence for their transmembrane delivery. The curves of chirascan circular dichroism (CD) and all-atom discontinuous molecular dynamics (DMD) simulations illuminate that, in a buffer environment, most pep-1 formed 3–10 helix structures. Meanwhile, when Pep-1 composed graphene slice and formed PDS/G, 3–10 helix and alpha-helix structures can be found in small quantities. When they on graphene oxide and formed PDS/GO, coil or type II beta-turn structure can be found from most of the pep-1 and 3–10 helix structure disappeared. By using sum-frequency generation (SFG) vibrational spectroscopy, we found that pep-1 with 3–10 helix structures in buffer solutions damaged the lipid bilayer violently. PDS/G with less 3–10 helix structures will change the orientation of lipid bilayer effectively but slightly. Pep-1 with coil or type II Beta-turn in PDS/GO cannot influence the structure of lipid bilayers. Hemolysis experiments also proved that when pep-1 composed as PDS/G, they will change the orientation of the plasma membrane of red blood cells effectively but slightly. When they attach on the GO and formed PDS/GO, the plasma membrane of red blood cells cannot be influenced. In conclusion, 3–10 helix structures will be positively correlated with disturbance of membranes. These results will be effectively guided the clinic application of pep-1 as a transporter of the drug delivery system.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


2019 ◽  
Vol 139 (10) ◽  
pp. 1146-1152
Author(s):  
Zugui Peng ◽  
Kenta Shimba ◽  
Yoshitaka Miyamoto ◽  
Tohru Yagi
Keyword(s):  

2019 ◽  
Author(s):  
Dimitrios Kolokouris ◽  
Iris Kalenderoglou ◽  
Panagiotis Lagarias ◽  
Antonios Kolocouris

<p>We studied by molecular dynamic (MD) simulations systems including the inward<sub>closed</sub> state of influenza A M2 protein in complex with aminoadamantane drugs in membrane bilayers. We varied the M2 construct and performed MD simulations in M2TM or M2TM with amphipathic helices (M2AH). We also varied the lipid bilayer by changing either the lipid, DMPC or POPC, POPE or POPC/cholesterol (chol), or the lipids buffer size, 10x10 Å<sup>2 </sup>or 20x20 Å<sup>2</sup>. We aimed to suggest optimal system conditions for the computational description of this ion channel and related systems. Measures performed include quantities that are available experimentally and include: (a) the position of ligand, waters and chlorine anion inside the M2 pore, (b) the passage of waters from the outward Val27 gate of M2 S31N in complex with an aminoadamantane-aryl head blocker, (c) M2 orientation, (d) the AHs conformation and structure which is affected from interactions with lipids and chol and is important for membrane curvature and virus budding. In several cases we tested OPLS2005, which is routinely applied to describe drug-protein binding, and CHARMM36 which describes reliably protein conformation. We found that for the description of the ligands position inside the M2 pore, a 10x10 Å<sup>2</sup> lipids buffer in DMPC is needed when M2TM is used but 20x20 Å<sup>2</sup> lipids buffer of the softer POPC; when M2AH is used all 10x10 Å<sup>2</sup> lipid buffers with any of the tested lipids can be used. For the passage of waters at least M2AH with a 10x10 Å<sup>2</sup> lipid buffer is needed. The folding conformation of AHs which is defined from hydrogen bonding interactions with the bilayer and the complex with chol is described well with a 10x10 Å<sup>2</sup> lipids buffer and CHARMM36. </p>


Sign in / Sign up

Export Citation Format

Share Document