scholarly journals Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

2014 ◽  
Vol 21 (12) ◽  
pp. 123118 ◽  
Author(s):  
D. Wu ◽  
B. Qiao ◽  
C. McGuffey ◽  
X. T. He ◽  
F. N. Beg
2015 ◽  
Vol 33 (1) ◽  
pp. 103-107 ◽  
Author(s):  
S. M. Weng ◽  
M. Murakami ◽  
Z. M. Sheng

AbstractThe generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.


2011 ◽  
Vol 29 (1) ◽  
pp. 11-16 ◽  
Author(s):  
K.H. Pae ◽  
I.W. Choi ◽  
J. Lee

AbstractThe characteristics of high energy protons generated from thin carbon-proton mixture targets via circularly polarized intense laser pulses are investigated using two-dimensional particle-in-cell simulations. It is found that the density ratio n between protons and carbon ions plays a key role in determining the acceleration dynamics. For low n values, the protons are mainly accelerated by the radiation pressure acceleration mechanism, resulting in a quasi-monoenergetic energy spectrum. The radiation pressure acceleration mechanism is enhanced by the directed-Coulomb-explosion of carbon ions which gives a high proton maximum energy, though a large energy spread, for high n values. From a proton acceleration point of view, the role of heavy ions is very important. The fact that the proton energy spectrum is controllable based on the target composition is especially useful in real experimental environments.


2012 ◽  
Vol 31 (1) ◽  
pp. 23-28 ◽  
Author(s):  
V.V. Korobkin ◽  
M.Yu. Romanovskiy ◽  
V.A. Trofimov ◽  
O.B. Shiryaev

AbstractA new concept of generating tight bunches of electrons accelerated to high energies is proposed. The electrons are born via ionization of a low-density neutral gas by laser radiation, and the concept is based on the electrons acceleration in traps arising within the pattern of interference of several relativistically intense laser pulses with amplitude fronts tilted relative to their phase fronts. The traps move with the speed of light and (1) collect electrons; (2) compress them to extremely high density in all dimensions, forming electron bunches; and (3) accelerate the resulting bunches to energies of at least several GeV per electron. The simulations of bunch formation employ the Newton equation with the corresponding Lorentz force.


2016 ◽  
Vol 23 (6) ◽  
pp. 063108 ◽  
Author(s):  
G. M. Petrov ◽  
C. McGuffey ◽  
A. G. R. Thomas ◽  
K. Krushelnick ◽  
F. N. Beg

2014 ◽  
Vol 32 (4) ◽  
pp. 605-611 ◽  
Author(s):  
V. Yu. Bychenkov ◽  
A. V. Brantov ◽  
G. Mourou

AbstractThe interaction of a relativistic short laser pulse with thin foil is studied using 3D PIC simulations in the context of optimized high-energy proton generation for nuclear medicine and pharmacy. As an example, we analyze the Tc-99m yield from the Mo-100(p,2n)Tc-99m reaction with the International Coherent Amplification Network (ICAN) concept defined by a 10 J pulse energy and 10 kHz repetition rate. Based on 3D PIC simulation it has been demonstrated that normally incident 100 fs laser pulse with maximum intensity of 5 × 1021 W/cm2 is able to generate 1011 protons with energy upto 45 MeV from thin semi-transparent CH2 target. Such laser-produced proton beam after 6 hours bombardment of the thick metallic Mo-100 target gives around 300 Gbq activities of Tc-99m isotope. This gives reason to believe that laser technology for producing technetium is possible with ICAN concept to replace the traditional scheme through the fission of weapons-grade uranium.


2007 ◽  
Vol 88 ◽  
pp. 012046 ◽  
Author(s):  
I Ben-Itzhak ◽  
A M Sayler ◽  
P Q Wang ◽  
J McKenna ◽  
B Gaire ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Vyacheslav E. Leshchenko ◽  
Alexander Kessel ◽  
Olga Jahn ◽  
Mathias Krüger ◽  
Andreas Münzer ◽  
...  

Abstract High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes. Therefore, precise knowledge of the pulse intensity, which is mainly limited by the accuracy of the temporal characterization, is a key prerequisite for the correct interpretation of experimental data. While the detection of energy and spatial profile is well established, the unambiguous temporal characterization of intense optical pulses, another important parameter required for intensity evaluation, remains a challenge, especially at relativistic intensities and a few-cycle pulse duration. Here, we report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan (RSSHG-D-scan)—a new approach allowing direct on-target temporal characterization of high-energy, few-cycle optical pulses at relativistic intensity.


Sign in / Sign up

Export Citation Format

Share Document