scholarly journals Tc-99m production with ultrashort intense laser pulses

2014 ◽  
Vol 32 (4) ◽  
pp. 605-611 ◽  
Author(s):  
V. Yu. Bychenkov ◽  
A. V. Brantov ◽  
G. Mourou

AbstractThe interaction of a relativistic short laser pulse with thin foil is studied using 3D PIC simulations in the context of optimized high-energy proton generation for nuclear medicine and pharmacy. As an example, we analyze the Tc-99m yield from the Mo-100(p,2n)Tc-99m reaction with the International Coherent Amplification Network (ICAN) concept defined by a 10 J pulse energy and 10 kHz repetition rate. Based on 3D PIC simulation it has been demonstrated that normally incident 100 fs laser pulse with maximum intensity of 5 × 1021 W/cm2 is able to generate 1011 protons with energy upto 45 MeV from thin semi-transparent CH2 target. Such laser-produced proton beam after 6 hours bombardment of the thick metallic Mo-100 target gives around 300 Gbq activities of Tc-99m isotope. This gives reason to believe that laser technology for producing technetium is possible with ICAN concept to replace the traditional scheme through the fission of weapons-grade uranium.


2012 ◽  
Vol 31 (1) ◽  
pp. 23-28 ◽  
Author(s):  
V.V. Korobkin ◽  
M.Yu. Romanovskiy ◽  
V.A. Trofimov ◽  
O.B. Shiryaev

AbstractA new concept of generating tight bunches of electrons accelerated to high energies is proposed. The electrons are born via ionization of a low-density neutral gas by laser radiation, and the concept is based on the electrons acceleration in traps arising within the pattern of interference of several relativistically intense laser pulses with amplitude fronts tilted relative to their phase fronts. The traps move with the speed of light and (1) collect electrons; (2) compress them to extremely high density in all dimensions, forming electron bunches; and (3) accelerate the resulting bunches to energies of at least several GeV per electron. The simulations of bunch formation employ the Newton equation with the corresponding Lorentz force.



Author(s):  
Albert Reitsma ◽  
Dino Jaroszynski

A comparison is made between the interaction of electron bunches and intense laser pulses with plasma. The laser pulse is modelled with photon kinetic theory , i.e. a representation of the electromagnetic field in terms of classical quasi-particles with space and wave number coordinates, which enables a direct comparison with the phase space evolution of the electron bunch. Analytical results are presented of the plasma waves excited by a propagating electron bunch or laser pulse, the motion of electrons or photons in these plasma waves and collective effects, which result from the self-consistent coupling of the particle and plasma wave dynamics.



2012 ◽  
Vol 78 (4) ◽  
pp. 461-468 ◽  
Author(s):  
WEI-MIN WANG ◽  
ZHENG-MING SHENG ◽  
SHIGEO KAWATA ◽  
CHUN-YANG ZHENG ◽  
YU-TONG LI ◽  
...  

AbstractEnergetic electron beam generation from a thin foil target by the ponderomotive force of an ultra-intense circularly polarized laser pulse is investigated. Two-dimensional particle-in-cell (PIC) simulations show that laser pulses with intensity of 1022–1023 Wcm−2 generate about 1–10 GeV electron beams, in agreement with the prediction of one-dimensional theory. When the laser intensity is at 1024–1025 Wcm−2, the beam energy obtained from PIC simulations is lower than the values predicted by the theory. The radiation damping effect is considered, which is found to become important for the laser intensity higher than 1025 Wcm−2. The effect of laser focus positions is also discussed.



2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yiwen E ◽  
Liangliang Zhang ◽  
Anton Tcypkin ◽  
Sergey Kozlov ◽  
Cunlin Zhang ◽  
...  

Matters are generally classified within four states: solid, liquid, gas, and plasma. Three of the four states of matter (solid, gas, and plasma) have been used for THz wave generation with short laser pulse excitation for decades, including the recent vigorous development of THz photonics in gases (air plasma). However, the demonstration of THz generation from liquids was conspicuously absent. It is well known that water, the most common liquid, is a strong absorber in the far infrared range. Therefore, liquid water has historically been sworn off as a source for THz radiation. Recently, broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma. The liquid target as the THz source presents unique properties. Specifically, liquids have the comparable material density to that of solids, meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases. In contrast with solid targets, the fluidity of liquid allows every laser pulse to interact with a fresh area on the target, meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses. These make liquids very promising candidates for the investigation of high-energy-density plasma, as well as the possibility of being the next generation of THz sources.



2012 ◽  
Vol 32 (7) ◽  
pp. 0714001
Author(s):  
邹德滨 Zou Debin ◽  
卓红斌 Zhuo Hongbin ◽  
邵福球 Shao Fuqiu ◽  
马燕云 Ma Yanyun ◽  
银燕 Yin Yan ◽  
...  




2014 ◽  
Vol 23 (09) ◽  
pp. 1430014 ◽  
Author(s):  
André D. Bandrauk ◽  
Guennaddi K. Paramonov

The quantum dynamics of muonic molecular ions ddμ and dtμ excited by linearly polarized along the molecular (z)-axis super-intense laser pulses is studied beyond the Born–Oppenheimer approximation by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional model, including the internuclear distance R and muon coordinates z and ρ. The peak-intensity of the super-intense laser pulses used in our simulations is I0 = 3.51 × 1022 W/cm2 and the wavelength is λl = 5 nm. In both ddμ and dtμ, expectation values 〈z〉 and 〈 ρ 〉 of muon demonstrate "post-laser-pulse" oscillations after the ends of the laser pulses. In ddμ post-laser-pulse z-oscillations appear as shaped nonoverlapping "echo-pulses". In dtμ post-laser-pulse muonic z-oscillations appear as comparatively slow large-amplitude oscillations modulated with small-amplitude pulsations. The post-laser-pulse ρ-oscillations in both ddμ and dtμ appear, for the most part, as overlapping "echo-pulses". The post-laser-pulse oscillations do not occur if the Born–Oppenheimer approximation is employed. Power spectra generated due to muonic motion along both optically active z and optically passive ρ degrees of freedom are calculated. The fusion probability in dtμ can be increased by more than 11 times by making use of three sequential super-intense laser pulses. The energy released from the dt fusion in dtμ can by more than 20 GeV exceed the energy required to produce a usable muon and the energy of the laser pulses used to enhance the fusion. The possibility of power production from the laser-enhanced muon-catalyzed fusion is discussed.



2004 ◽  
Vol 22 (3) ◽  
pp. 203-206 ◽  
Author(s):  
C.C. CHIRILĂ ◽  
C.J. JOACHAIN ◽  
N.J. KYLSTRA ◽  
R.M. POTVLIEGE

At high laser intensities, three step recollision processes such as high order harmonic generation and high-order ATI, are normally severely suppressed due to the magnetic field component of the laser pulse. However, if the laser pulse and relativistic ion beam are directed against each other, a significant increase in the frequency and the intensity of the pulse in the rest frame of the ions can occur. By performing calculations based on a Coulomb-corrected nondipole strong field approximation, we have shown that there is a range of intensities, Lorentz factors, and ion charges for which the suppression of the three step recollision processes is not severe, even for ponderomotive energies exceeding 10 keV. As an example, we consider parameters relevant to the accelerator that will be built at GSI-Darmstadt, capable of accelerating multicharged ions to Lorentz factors reaching 30.



Sign in / Sign up

Export Citation Format

Share Document