scholarly journals Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

2015 ◽  
Vol 143 (24) ◽  
pp. 243144 ◽  
Author(s):  
Christopher M. MacDermaid ◽  
Hemant K. Kashyap ◽  
Russell H. DeVane ◽  
Wataru Shinoda ◽  
Jeffery B. Klauda ◽  
...  
Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


2017 ◽  
Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.


2017 ◽  
Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.


Author(s):  
Mei Zheng ◽  
Andres Jaramillo-Botero ◽  
Xue-hai Ju ◽  
William A. Goddard

Developing a coarse-grained force field for polyacrylamide based on quantum mechanics equation of state.


2020 ◽  
Author(s):  
Florencia Klein ◽  
Daniela Cáceres-Rojas ◽  
Monica Carrasco ◽  
Juan Carlos Tapia ◽  
Julio Caballero ◽  
...  

<p>Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges to achieve an accurate structural and dynamical description of many biological assemblies. This is particularly the case for coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or simply not available for the vast majority of CG- force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations. Using this simple approach, we provide a set of interaction parameters for Calcium, Magnesium, and Zinc ions, which cover more than 80% of the metal-bound structures reported on the PDB. Simulations performed using the SIRAH force field on several proteins and DNA systems show that using the present approach it is possible to obtain non-bonded interaction parameters that obviate the use of topological constraints. </p>


Sign in / Sign up

Export Citation Format

Share Document