scholarly journals Refining amino acid hydrophobicity for dynamics simulation of membrane proteins

Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.

2017 ◽  
Author(s):  
Ronald D Hills, Jr

Coarse-grained simulations enable the study of membrane proteins in the context of their native environment but require reliable parameters. The CgProt force field is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. The reassignment of polar sidechain sites was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlate with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These data points can be used to further discriminate between alternate force field parameters. Available partitioning data was also used to reparameterize the representation of the polar peptide backbone for non-alanine residues. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in molecular dynamics simulations of a variety of membrane protein systems.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4230 ◽  
Author(s):  
Ronald D. Hills, Jr

Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13008-13017 ◽  
Author(s):  
Jun Liu ◽  
Haixiao Wan ◽  
Huanhuan Zhou ◽  
Yancong Feng ◽  
Liqun Zhang ◽  
...  

The formation mechanism of the bound rubber in elastomer nanocomposites using the coarse-grained molecular-dynamics simulations.


2015 ◽  
Vol 143 (24) ◽  
pp. 243144 ◽  
Author(s):  
Christopher M. MacDermaid ◽  
Hemant K. Kashyap ◽  
Russell H. DeVane ◽  
Wataru Shinoda ◽  
Jeffery B. Klauda ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243429
Author(s):  
Dimitrios A. Mitsikas ◽  
Nicholas M. Glykos

Both molecular mechanical and quantum mechanical calculations play an important role in describing the behavior and structure of molecules. In this work, we compare for the same peptide systems the results obtained from folding molecular dynamics simulations with previously reported results from quantum mechanical calculations. More specifically, three molecular dynamics simulations of 5 μs each in explicit water solvent were carried out for three Asn-Gly-containing heptapeptides, in order to study their folding and dynamics. Previous data, based on quantum mechanical calculations within the DFT framework have shown that these peptides adopt β-turn structures in aqueous solution, with type I’ β-turn being the most preferred motif. The results from our analyses indicate that at least for the given systems, force field and simulation protocol, the two methods diverge in their predictions. The possibility of a force field-dependent deficiency is examined as a possible source of the observed discrepancy.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S230
Author(s):  
Yasuaki Komuro ◽  
Chigusa Kobayashi ◽  
Suyong Re ◽  
Eiro Muneyuki ◽  
Yuji Sugita

Sign in / Sign up

Export Citation Format

Share Document