Two dimensional thick center vortex model

2016 ◽  
Author(s):  
Shahnoosh Rafibakhsh ◽  
Alireza Ahmadi
Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


1992 ◽  
Vol 4 (5) ◽  
pp. 1036-1039 ◽  
Author(s):  
R. Benzi ◽  
M. Colella ◽  
M. Briscolini ◽  
P. Santangelo

2012 ◽  
Vol 713 ◽  
pp. 150-158 ◽  
Author(s):  
S. F. Harding ◽  
I. G. Bryden

AbstractAn experiment apparatus has been previously developed with the ability to independently control the instantaneous flow velocity in a water flume. This configuration, which uses two pitching hydrofoils to generate the flow fluctuations, allows the unsteady response of submerged structures to be studied over a wide range of driving frequencies and conditions. Linear unsteady lift theory has been used to calculate the instantaneous circulation about two pitching hydrofoils in uniform flow. A vortex model is then used to describe the circulation in the wakes that determine the velocity perturbations at the centreline between the foils. This paper introduces how the vortex model can be discretized to allow the inverse problem to be solved, such that the foil motions required to recreate a desired velocity time series can be determined. The results of this model are presented for the simplified cases of oscillatory velocity fluctuations in the vertical and stream-wise directions separately, and also simultaneously. The more general case of two-dimensional aperiodic velocity fluctuations is also presented, which demonstrates the capability of configuration between the suggested frequency limits of $0. 06\leq k\leq 1. 9$.


Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


1996 ◽  
Vol 118 (4) ◽  
pp. 779-786 ◽  
Author(s):  
L. M. Phinney ◽  
J. A. C. Humphrey

The two-dimensional wall-driven flow in an enclosure has been a numerical paradigm of long-standing interest and value to the fluid mechanics community. In this paradigm the enclosure is infinitely long in the x-coordinate direction and of square cross-section (d × d) in the y-z plane. Fluid motion is induced in all y-z planes by a wall (here the top wall) sliding normal to the x-coordinate direction. This classical numerical paradigm can be extended by taking a length L of the geometry in the x-coordinate direction and joining the resulting end faces at x = 0 and x = L to form a toroid of square cross-section (d × d) and radius of curvature Rc. In the curved geometry, axisymmetric fluid motion (now in the r-z planes) is induced by sliding the top flat wall of the toroid with an imposed radial velocity, ulid, generally directed from the convex wall towards the concave wall of the toroid. Numerical calculations of this flow configuration are performed for values of the Reynolds number (Re = ulidd/ν) equal to 2400, 3200, and 4000 and for values of the curvature ratio (δ = d/Rc) ranging from 5.0 · 10−6 to 1.0. For δ ≤ 0.05 the steady two-dimensional flow pattern typical of the classical (straight) enclosure is faithfully reproduced. This consists of a large primary vortex occupying most of the enclosure and three much smaller secondary eddies located in the two lower corners and the upper upstream (convex wall) corner of the enclosure. As δ increases for a fixed value of Re, a critical value, δcr, is found above which the primary center vortex spontaneously migrates to and concentrates in the upper downstream (concave wall) corner. While the sense of rotation originally present in this vortex is preserved, that of the slower moving fluid below it and now occupying the bulk of the enclosure cross-section is reversed. The relation marking the transition between these two stable steady flow patterns is predicted to be δcr1/4 = 3.58 Re-1/5 (δ ± 0.005).


2010 ◽  
Vol 655 ◽  
pp. 198-216 ◽  
Author(s):  
GIANNI PEDRIZZETTI

The understanding of the vortex formation process is currently driving a novel attempt to evaluate the performance of fluid dynamics in biological systems. The concept of formation time, developed for axially symmetric orifices, is here studied in two-dimensional flows for the generation of vortex pairs. The early stage of the formation process is studied with the single vortex model in the inviscid limit. Within this framework, the equation can be written in a universal form in terms of the formation time. The single vortex model properly represents the initial circular spiralling vortex sheet and its acceleration for self-induced motion. Then, an analysis is performed by numerical simulation of the two-dimensional Navier–Stokes equations to cope with the spatially extended vortex structure. The results do not show the pinch-off phenomenon previously reported for vortex rings. The two-dimensional vortex pair tends to a stably growing structure such that, while it translates and extends longitudinally, it remains connected to the sharp edge by a shear layer whose velocity is always about twice that of the leading vortex. At larger values of the Reynolds number the instability of the shear layer develops small-scale vortices capable of destabilizing the coherent vortex growth. The absence of a critical formation number for two-dimensional vortex pairs suggests further considerations for the development of concepts of optimal vortex formation from orifices with variable curvature or of a tapered shape.


Sign in / Sign up

Export Citation Format

Share Document