Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

2016 ◽  
Vol 87 (5) ◽  
pp. 053502 ◽  
Author(s):  
Ryuichi Sano ◽  
Byron J. Peterson ◽  
Masaru Teranishi ◽  
Naofumi Iwama ◽  
Masahiro Kobayashi ◽  
...  
2014 ◽  
Vol 1044-1045 ◽  
pp. 1343-1348
Author(s):  
Wu Can He ◽  
Shou Yi Liao ◽  
Zuo Yu Zhang ◽  
He Xin Zhang

Dynamic IR image generation of space target is one of the key technologies in hardware in the loop simulation for the infrared imaging guidance system. The three-dimensional entity model is created in the Creator, Sinda/Fluint is used to analyze each part of dynamic infrared radiation characteristics from on-orbit Space Target, on the basis of the LRS infrared star catalogues, celestial background modeling is built. In Vega, the dynamic IR image of space target is generated. The simulation results show that the dynamic IR image of Space Target provide the important objective basis for the hardware in the loop simulation for the infrared imaging guidance system.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1801 ◽  
Author(s):  
Heng Wang ◽  
Zhaoping Zhong

The present paper studied the mixing characteristics of biomass and sands in a fluidized bed. A three dimensional model is calculated on the basis of computational fluid dynamics (CFD) and the discrete element method (DEM), while the lab-scale experiments under similar conditions are conducted. To investigate the mixing behavior of biomass and sands, particle distribution, particles time averaged kinetic motion and the Lacey index are analyzed and the effects of gas velocity and biomass size are discussed. Gas velocity provides the basic motion for particle movement and biomass particles gain a lot more kinetic motion than sands due to their large size. The biomass mixing process in a horizontal direction is more sensitive to gas velocity than in a vertical direction. Biomass size could slightly affect the mixing quality and a well mixing in fluidized bed could be reached if the size of biomass to sands is smaller than 4 times.


Buildings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 187
Author(s):  
Efstathios Adamopoulos ◽  
Monica Volinia ◽  
Mario Girotto ◽  
Fulvio Rinaudo

Thermal infrared imaging is fundamental to architectural heritage non-destructive diagnostics. However, thermal sensors’ low spatial resolution allows capturing only very localized phenomena. At the same time, thermal images are commonly collected with independence of geometry, meaning that no measurements can be performed on them. Occasionally, these issues have been solved with various approaches integrating multi-sensor instrumentation, resulting in high costs and computational times. The presented work aims at tackling these problems by proposing a workflow for cost-effective three-dimensional thermographic modeling using a thermal camera and a consumer-grade RGB camera. The discussed approach exploits the RGB spectrum images captured with the optical sensor of the thermal camera and image-based multi-view stereo techniques to reconstruct architectural features’ geometry. The thermal and optical sensors are calibrated employing custom-made low-cost targets. Subsequently, the necessary geometric transformations between undistorted thermal infrared and optical images are calculated to replace them in the photogrammetric scene and map the models with thermal texture. The method’s metric accuracy is evaluated by conducting comparisons with different sensors and the efficiency by assessing how the results can assist the better interpretation of the present thermal phenomena. The conducted application demonstrates the metric and radiometric performance of the proposed approach and the straightforward implementability for thermographic surveys, as well as its usefulness for cost-effective historical building assessments.


1987 ◽  
Vol 3 (4) ◽  
pp. 243-248 ◽  
Author(s):  
James A. Katowitz ◽  
Gabor T. Herman ◽  
Linton A. Whitaker ◽  
Michael G. Welsh

Sign in / Sign up

Export Citation Format

Share Document