scholarly journals Control strategies in a thermal oil – Molten salt heat exchanger

Author(s):  
Lidia Roca ◽  
Javier Bonilla ◽  
Margarita M. Rodríguez-García ◽  
Patricia Palenzuela ◽  
Alberto de la Calle ◽  
...  
2018 ◽  
Author(s):  
Javier Bonilla

Many commercial solar thermal power plants rely on indirect thermal storage systems in order to provide a stable and reliable power supply, where the working fluid is commonly thermal oil and the storage fluid is molten salt. The thermal oil - molten salt heat exchanger control strategies, to charge and discharge the thermal storage system, strongly affect the performance of the whole plant. Shell-and-tube heat exchangers are the most common type of heat exchangers used in these facilities. With the aim of developing advanced control strategies accurate and fast dynamic models of shell-and-tube heat exchangers are essential. For this reason, several shell-and-tube heat exchanger models with different degrees of complexity have been studied, analyzed and validated against experimental data from the CIEMAT-PSA molten salt test loop for thermal energy systems facility. Simulation results are compared in steady-state as well as transient predictions in order to determine the required complexity of the model to yield accurate results.


2017 ◽  
Vol 101 ◽  
pp. 209-223 ◽  
Author(s):  
Lane B. Carasik ◽  
Dillon R. Shaver ◽  
Jonah B. Haefner ◽  
Yassin A. Hassan

2019 ◽  
Vol 158 ◽  
pp. 5832-5837 ◽  
Author(s):  
Jiewei Lao ◽  
Jing Ding ◽  
Qianmei Fu ◽  
Weilong Wang ◽  
Jianfeng Lu

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1720 ◽  
Author(s):  
Xiaolei Li ◽  
Zhifeng Wang ◽  
Ershu Xu ◽  
Linrui Ma ◽  
Li Xu ◽  
...  

A thermal energy storage system is a critical component in concentrating solar power plants (CSPP), owing to which concentrating solar power (CSP) has superiorities over photovoltaic and wind power. Currently, the sole thermal energy storage (TES) system which is commercially applied to parabolic trough solar power (PTSP) plants worldwide is the two-tank indirect TES. In this study, the dynamic models of a solar field (SF), a two-tank indirect TES system, and a steam generation system (SGS) in a PTSP plant were developed and validated. Control and operation strategies on a clear day and a cloudy day were provided, and the dynamic simulations of the coupled operation using actual meteorological data were conducted. The influence of the two-tank indirect TES system on the dynamic characteristics of SGS on a system level was analyzed. Other key parameter variations were also presented. The results show that during the transition from the charge to the discharge process, the steam parameters slowly decrease. The variation of the molten salt height is further affected by the molten salt mass flow rate at the inlet and outlet of the molten salt tank. We adopted the PI control to adjust the thermal oil mass flow rate, thermal oil temperature, and water height. The developed dynamic models are useful in guiding system operation and control.


Author(s):  
Kenneth M. Armijo ◽  
Matthew D. Carlson ◽  
Dwight S. Dorsey ◽  
Joshua M. Christian ◽  
Craig S. Turchi

Abstract Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. Although slightly higher limits may be possible with molten salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, HTF technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative to molten salts, such as with alkali metal systems. This investigation explores the development of a 2.0 MWth sodium receiver system that employs a sodium receiver as the HTF, as well as with a ternary chloride (20%NaCl/40%MgCl/40%KCl by mol wt.%) salt as a thermal energy storage (TES) medium to facilitate a 6-hr. storage duration. A sodium-to-salt heat exchanger model as well as a salt-to-sCO2 primary heat exchanger model are employed and evaluated in this investigation. A thermodynamic system design model was developed using Engineering Equation Solver (EES) where state properties were calculated at inlets and outlets along both hot and cold legs of the pilot-scale plant. This investigation assesses receiver performance as well as system efficiency studies for the pump and system operational ranges. Results found that high efficiency sodium receivers were found to have higher heat transfer coefficients and required far less spreading of incident flux. The system performance model results suggest that for a pump speed of 2400 RPM, respective hot and cold pump TDH values were determined to be 260.1–307 ft. and 260.1–307 ft for pump flow rates of 90–120 GPM.


Sign in / Sign up

Export Citation Format

Share Document