Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section

2016 ◽  
Vol 28 (7) ◽  
pp. 077102 ◽  
Author(s):  
Andrew H. Lind ◽  
Anya R. Jones
1995 ◽  
Vol 117 (3) ◽  
pp. 200-204 ◽  
Author(s):  
K. Pierce ◽  
A. C. Hansen

The Beddoes-Leishman model for unsteady aerodynamics and dynamic stall has recently been implemented in YawDyn, a rotor analysis code developed at the University of Utah for the study of yaw loads and motions of horizontal axis wind turbines. This paper presents results obtained from validation efforts for the Beddoes model. Comparisons of predicted aerodynamic force coefficients with wind tunnel data and data from the combined experiment rotor are presented. Also, yaw motion comparisons with the combined experiment rotor are presented. In general the comparisons with the measured data are good, indicating that the model is appropriate for the conditions encountered by wind turbines.


Author(s):  
Shashank Maurya ◽  
Xing Wang ◽  
Inderjit Chopra

A single main rotor helicopter's maximum forward speed is limited due to the compressibility effects on the advancing side and reverse flow and dynamic stall on the retreating side. Compound helicopters can address these issues with a slowed rotor and lift compounding. There is a scarcity of test data on compound helicopters, and the present research focuses on a systematic wind tunnel test on lift compounding. Slowing down the rotor increases the advance ratio and, hence, the reverse flow region, which does not produce much lift. The lift is augmented with a wing on the retreating side. A hingeless rotor hub helps to balance the rolling moment with lift offset. Wind tunnel tests were carried out on this configuration up to advance ratios of 0.7 at two different wing incidence angles. Rotor performance, controls, blade structural loads, and hub vibratory loads were measured and compared with in-house comprehensive analysis, UMARC. A comparison between different wing incidences at constant total lift provided many insights into the lift compounding. It increased the vehicle efficiency and reduced peak-to-peak lag bending moment and in-plane 4/rev hub vibratory loads. The only trade-off was steady rotor hub loads and rolling moment at the wing root carried by the fuselage.


2019 ◽  
Vol 11 ◽  
pp. 175682931983367
Author(s):  
Carolyn M Reed ◽  
David A Coleman ◽  
Moble Benedict

This paper provides a fundamental understanding of the unsteady fluid-dynamic phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers (Re ∼ 18,000) by utilizing a combination of instantaneous blade force and flowfield measurements. The dynamic blade force coefficients were almost double the static ones, indicating the role of dynamic stall. For the dynamic case, the blade lift monotonically increased up to ±45° pitch amplitude; however, for the static case, the flow separated from the leading edge after around 15° with a large laminar separation bubble. There was significant asymmetry in the lift and drag coefficients between the upper and lower halves of the trajectory due to the flow curvature effects (virtual camber). The particle image velocimetry measured flowfield showed the dynamic stall process during the upper half to be significantly different from the lower half because of the reversal of dynamic virtual camber. Even at such low Reynolds numbers, the pressure forces, as opposed to viscous forces, were found to be dominant on the cyclorotor blade. The power required for rotation (rather than pitching power) dominated the total blade power.


2004 ◽  
Vol 20 (5) ◽  
pp. 835-841 ◽  
Author(s):  
Nicole L. Key ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

Author(s):  
J. Gordon Leishman

Many of the aerodynamic phenomena contributing to the observed effects on wind turbines are now known, but the details of the flow are still poorly understood and are challenging to predict accurately, issues discussed herein include the modeling of the induced velocity field produced by the vortical wake behind the turbine, the various unsteady aerodynamic issues associated with the blade sections, and the intricacies of dynamic stall. Fundamental limits exist in the capabilities of all models, and misunderstandings or ambiguities can also arise in how these models should be properly applied. A challenge for analysts is to use complementary experimental measurements and modeling techniques to better understand the aerodynamic problems found on wind turbines, and to develop more rigorous models with wider ranges of application.


Author(s):  
S. Schreck ◽  
M. Robinson

To further reduce the cost of wind energy, future turbine designs will continue to migrate toward lighter and more flexible structures. Thus, the accuracy and reliability of aerodynamic load prediction has become a primary consideration in turbine design codes. Dynamically stalled flows routinely generated during yawed operation are powerful and potentially destructive, as well as complex and difficult to model. As a prerequisite to aerodynamics model improvements, wind turbine dynamic stall must be characterized in detail and thoroughly understood. In the current study, turbine blade surface pressure data and local inflow data acquired by the NREL Unsteady Aerodynamics Experiment during the NASA Ames wind tunnel experiment were analyzed. The dynamically stalled, vortex dominated flow field responded in systematic fashion to variations in wind speed, turbine yaw angle, and radial location, forming the basis for more thorough comprehension of wind turbine dynamic stall and improved modeling.


Sign in / Sign up

Export Citation Format

Share Document