rolling moment
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 33)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Izuan Amin Ishak ◽  
Nurshafinaz Maruai ◽  
Fadhilah Mohd Sakri ◽  
Rahmah Mahmudin ◽  
Nor Afzanizam Samiran ◽  
...  

In this article, a numerical approach is applied to study the flow regimes surround a generic train model travelling on different bridge configurations under the influence of crosswind. The bridge is varies based on the different geometry of the bridge girder. The crosswind flow angle (Ψ) is varied from 0° to 90°. The incompressible flow around the train was resolved by utilizing the Reynolds-averaged Navier-Stokes (RANS) equations combined with the SST k-ω turbulence model. The Reynolds number used, based on the height of the train and the freestream velocity, is 3.7 × 105. In the results, it was found that variations of the crosswind flow angles produced different flow regimes. Two unique flow regimes appear, representing (i) slender body flow behaviour at a smaller range of Ψ (i.e. Ψ ≤ 45°) and (ii) bluff body flow behaviour at a higher range of Ψ (i.e. Ψ ≥ 60°). As the geometries of the bridge girder were varied, the bridge with the wedge girder showed the worst aerodynamic properties with both important aerodynamic loads (i.e. side force and rolling moment), followed by the triangular girder and the rectangular girder. This was due to the flow separation on the windward side and flow structure formation on the leeward side, both of which are majorly influenced by the flow that moved from the top and below of the bridge structures.


2021 ◽  
Author(s):  
S. Sai Sankalp ◽  
Vansh Sharma ◽  
Abhyudaya Singh ◽  
Aneesh Surendra Salian ◽  
G. Srinivas

AbstractMissiles and sounding rockets usually deviate from the trajectory due to unstable roll. Fins with cant angles are generally used to provide a rolling moment in sounding rockets and missiles to minimize the instability. Inducing a rolling moment also leads to an increase in the rocket motor’s power consumption due to the rise in drag, so inducing an optimal rolling moment with a minimal increase in drag is a crucial design criterion. It is crucial to maintain the similarity parameters while testing a scaled-down model in a wind tunnel. Therefore, computational fluid dynamics (CFD) is more efficient than extensive wind tunnel tests. In this paper, three-dimensional, incompressible simulations were performed on different models of sounding rockets using commercial CFD package fluent. The simulations were performed with the help of $$k-\epsilon $$ k - ϵ standard turbulence model. The results obtained were tabulated and graphically represented, and the trends of aerodynamic coefficients like $$C_{\text {d}}$$ C d and $$C_{\text {m}}$$ C m were analyzed. The purpose of this study is to analyze the dependency of aerodynamic coefficients on different fin configurations with emphasis on the cant angle. This study will be helpful to researchers designing a sounding rocket and help in maximizing apogee. The experimental and computational results show a favourable comparison. The results will show a particular configuration of fin having greater $$C_{\text {m}}/C_{\text {d}}$$ C m / C d which yields in a greater rolling moment and least amount of drag.


2021 ◽  
Author(s):  
Ammar Jessa

<div>Three T-Motor rotors with different diameters but otherwise identical relative geometries were tested in fully edgewise flow at different advance ratios and Reynolds numbers. The objective was to verify whether the existing scaling relationships between rotor size and the aerodynamic forces are applicable to small scale rotors that operate at relatively low chord-Reynolds numbers. The rotors were mounted onto a test stand housed inside a closed loop wind-tunnel where the air speed of the tunnel was varied to achieve different advance ratios. The chord-Reynolds umber at 75% of the radius of each blade were matched for ranges from 39,000 to 117,000. The experimental data was also compared to computational results from a blade element momentum theory-based method. The results showed that the existing coefficient based scaling laws can be used to predict the performance parameters for the thrust coefficient, power coefficient, longitudinal force coefficient, side force coefficient and, rolling moment coefficient for the full range of Reynolds numbers tested. Although for the pitching moment coefficient, a coefficient approach became less applicable for chord-Reynolds number of less than 100,000.</div>


2021 ◽  
Author(s):  
Ammar Jessa

<div>Three T-Motor rotors with different diameters but otherwise identical relative geometries were tested in fully edgewise flow at different advance ratios and Reynolds numbers. The objective was to verify whether the existing scaling relationships between rotor size and the aerodynamic forces are applicable to small scale rotors that operate at relatively low chord-Reynolds numbers. The rotors were mounted onto a test stand housed inside a closed loop wind-tunnel where the air speed of the tunnel was varied to achieve different advance ratios. The chord-Reynolds umber at 75% of the radius of each blade were matched for ranges from 39,000 to 117,000. The experimental data was also compared to computational results from a blade element momentum theory-based method. The results showed that the existing coefficient based scaling laws can be used to predict the performance parameters for the thrust coefficient, power coefficient, longitudinal force coefficient, side force coefficient and, rolling moment coefficient for the full range of Reynolds numbers tested. Although for the pitching moment coefficient, a coefficient approach became less applicable for chord-Reynolds number of less than 100,000.</div>


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 330
Author(s):  
Peter C. Chu ◽  
Vinicius S. Pessanha ◽  
Chenwu Fan ◽  
Joseph Calantoni

The coupled Delft3D-object model has been developed to predict the mobility and burial of objects on sandy seafloors. The Delft3D model is used to predict seabed environmental factors such as currents, waves (peak wave period, significant wave height, wave direction), water level, sediment transport, and seabed change, which are taken as the forcing term to the object model consisting of three components: (a) physical parameters such as diameter, length, mass, and rolling moment; (b) dynamics of the rolling cylinder around its major axis; (c) an empirical sediment scour model with re-exposure parameterization. The model is compared with the observational data collected from a field experiment from 21 April to 13 May 2013 off the coast of Panama City, Florida. The experimental data contain both object mobility using sector scanning sonars and maintenance divers as well as simultaneous environmental time series data of the boundary layer hydrodynamics and sediment transport conditions. Comparison between modeled and observed data clearly shows the model’s capabilities and limitations.


2021 ◽  
pp. 1-35
Author(s):  
D. Kumar ◽  
T. Goyal ◽  
S. Kamle ◽  
P.M. Mohite ◽  
E.M. Lau

Abstract Large birds have evolved an effective wing anatomy and mechanics, enabling airborne mastery of manoeuvres and endurance. For these very reasons, they are difficult to replicate and study. The aim of the present work is to achieve active wing articulations to mimic natural bird flapping towards efficient and agile Unmanned Aerial Vehicles (UAVs). The proposed design, bio-mimicking the black-headed gull, Larus ridibundus, has three active and independent servo-controlled wing joints at the shoulder, elbow and wrist to achieve complex controls. The construction of the wing is realised through a polymeric skin and carbon fibre–epoxy composite spars and ribs. The wing movements (flapping, span reduction and twisting) envelopes of the full-scale robotic gull (Robogull) are examined using the Digital Image Correlation (DIC) technique and laser displacement sensing. Its aerodynamic performance was evaluated in a wind tunnel at various flapping parameters, wind speeds and angles of attack. It is observed that a flapping amplitude of 45 $^\circ$ is more favourable than 90 $^\circ$ for generating higher lift and thrust, while also depending on the presence of span reduction, twist and wind speed. The model performs better at a flying velocity of 4m/s as compared with 8m/s. Both lift and thrust are high at a higher flapping frequency of 2.5Hz. Combined variation of the flapping frequency and stroke ratio should be considered for better aerodynamic performance. The combination of a lower stroke ratio of 0.5 with a flapping frequency of 2.5Hz generates higher lift and thrust than other combinations. Span reduction and wing twist notably and independently enhance lift and thrust, respectively. An increase in the angle-of-attack increases lift but decreases thrust. The model can also generate a significant rolling moment when set at a bank angle of 20 $^\circ$ and operated with independently controlled flapping amplitudes for the wings (45 $^\circ$ for the left wing and 90 $^\circ$ for the right wing). Based on the optimal values for the flapping amplitude (45 $^\circ$ ), flapping frequency (2.5Hz) and flying velocity (4m/s), the Strouhal number (St) of the Robogull model is 0.24, lying in the optimal range ( $0.2 < \mathrm{St} < 0.4$ ) for natural flyers and swimmers.


Author(s):  
Peter C. Chu ◽  
Vinicius S. Pessanha ◽  
Chenwu Fan

Coupled Delft3D-object model has been developed to predict object&rsquo;s mobility and burial on sandy seafloor. The Delft3D model is used to predict seabed environment such as currents, waves (peak period, significant wave height, wave direction), water level, sediment transport, and seabed change, which are taken as the forcing term to the object model consisting of three components: (a) object&lsquo;s physical parameters such as diameter, length, mass, and rolling moment, (b) dynamics of rolling cylinder around its major axis, and (c) empirical sediment scour model with re-exposure parameterization. The model is compared with the observational data collected from a field experiment from 21 April to 23 May 2013 off the coast of Panama City, Florida funded by the Department of Defense Strategic Environmental Research and Development Program. The experimental data contain both objects&rsquo; mobility using sector scanning and pencil beam sonars and simultaneous environmental time series data of the boundary layer hydrodynamics and sediment transport conditions. Comparison between modeled and observed data clearly show the model capability.


2021 ◽  
Author(s):  
Yuefeng Wei ◽  
Yi Yang

Abstract Nowadays, zero speed fin stabilizer has been initially applied in ship. Whether zero speed fin stabilizer can generate enough lift moment to resist rolling moment or not, determines the anti-rolling effect of ship at zero speed. In the present paper, numerical model is proposed to calculate the lift force and moment of zero speed fin stabilizer. The results of numerical calculation are verified by model test results and the hydrodynamic performance of zero speed fin stabilizer are studied. The numerical results are in good agreement with the model test results. For different swing angular velocity of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer reach the maximum at the same swing angle. For the same swing angle of a zero speed fin stabilizer, the lift force and moment of zero speed fin stabilizer are proportional to the square of angular velocity.


Author(s):  
Alexander Kravtsov ◽  
Konstantin Vukolov ◽  
Igor Plokhov ◽  
Igor Savraev ◽  
Sergei Loginov

The article is devoted to the application of neural network methods and genetic algorithms in solving problems of controlling an electric drive of an active magnetic suspension. The method of rolling moment for eliminating an imbalance is considered. The scheme of the neural network controller and the curves of the transients in the open single-mass electromechanical system and in the system c of the neurocontrollers are presented.


2021 ◽  
Vol 125 (1287) ◽  
pp. 807-829
Author(s):  
J.R. Brincklow ◽  
D.F. Hunsaker

AbstractMost modern aircraft employ discrete ailerons for roll control. The induced drag, rolling moment, and yawing moment for an aircraft depend in part on the location and size of the ailerons. In the present study, lifting-line theory is used to formulate theoretical relationships between aileron design and the resulting forces and moments. The theory predicts that the optimum aileron geometry is independent of prescribed lift and rolling moment. A numerical potential flow algorithm is used to evaluate the optimum size and location of ailerons for a wide range of planforms with varying aspect ratio and taper ratio. Results show that the optimum aileron design to minimise induced drag always extends to the wing tip. Impacts to induced drag and yawing moment are also considered, and results can be used to inform initial design and placement of ailerons on future aircraft. Results of this optimisation study are also compared to theoretical optimum results that could be obtained from morphing-wing technology. Results of this comparison can be used to evaluate the potential benefits of using morphing-wing technology rather than traditional discrete ailerons.


Sign in / Sign up

Export Citation Format

Share Document