Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

2016 ◽  
Vol 87 (9) ◽  
pp. 093505 ◽  
Author(s):  
M. Y. Pustylnik ◽  
M. A. Fink ◽  
V. Nosenko ◽  
T. Antonova ◽  
T. Hagl ◽  
...  
Author(s):  
Andrey M LIPAEV ◽  
Andrey V. ZOBNIN ◽  
Aleksandr D. USACHEV ◽  
Vladimir I MOLOTKOV ◽  
Dmitriy I. ZHUKHOVITSKIY ◽  
...  

The scientific equipment «Plasmakrystall–4» («PK–4») is designed to study complex (dusty) plasma under microgravity conditions aboard the International Space Station (ISS) and is a joint project of the European Space Agency (ESA) and Roscosmos. Scientific equipment «PK–4» is integrated into «European physiological modules» (EPM) rack, in the European laboratory module Columbus. Experiment control — automated, software-interactive, or manual from an on-board laptop and/or from a terminal in the ground control center. A low-pressure direct current discharge in noble gases in a glass tube is used to create a plasma at scientific equipment «PK–4». Microparticles of a given size are injected into the discharge to obtain a complex plasma. Two digital video cameras allow to trace individual microparticles inside the tube in phase space, which makes a complex plasma to be a good model for studying classical phenomena in condensed matter at the kinetic level. To monitor the plasma conditions, an integrated spectrometer and another video camera are used allowing to observe the plasma's own emission at different wavelengths. To study the reaction of microparticles to external forces, they can be exposed to radiation from a powerful laser, a gas stream, and also to thermophoretic force, i.e., by producing a given temperature gradient. Key words: complex plasmas, microparticles, soft matter, laser manipulation, microgravity, viscosity measurements, gas discharges, plasma diagnostics.


2008 ◽  
Vol 10 (3) ◽  
pp. 033036 ◽  
Author(s):  
H M Thomas ◽  
G E Morfill ◽  
V E Fortov ◽  
A V Ivlev ◽  
V I Molotkov ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 39 ◽  
Author(s):  
Mierk Schwabe ◽  
Milenko Rubin-Zuzic ◽  
Christoph Räth ◽  
Mikhail Pustylnik

Often, in complex plasmas and beyond, images of particles are recorded with a side-by-side camera setup. These images ideally need to be joined to create a large combined image. This is, for instance, the case in the PK-4 Laboratory on board the International Space Station (the next generation of complex plasma laboratories in space). It enables observations of microparticles embedded in an elongated low temperature DC plasma tube. The microparticles acquire charges from the surrounding plasma and interact strongly with each other. A sheet of laser light illuminates the microparticles, and two cameras record the motion of the microparticles inside this laser sheet. The fields of view of these cameras slightly overlap. In this article, we present two methods to combine the associated image pairs into one image, namely the SimpleElastix toolkit based on comparing the mutual information and a method based on detecting the particle positions. We found that the method based on particle positions performs slightly better than that based on the mutual information, and conclude with recommendations for other researchers wanting to solve a related problem.


2005 ◽  
Author(s):  
Danielle Paige Smith ◽  
Vicky E. Byrne ◽  
Cynthia Hudy ◽  
Mihriban Whitmore

Sign in / Sign up

Export Citation Format

Share Document