Dynamics and structural properties of dusty plasma liquid in microgravity: experiments onboard the International Space Station

2004 ◽  
Vol 46 (12B) ◽  
pp. B359-B366 ◽  
Author(s):  
V E Fortov ◽  
O S Vaulina ◽  
O F Petrov ◽  
V I Molotkov ◽  
A M Lipaev ◽  
...  
Author(s):  
Yanjun Li ◽  
Ya-Ting T. Liao ◽  
Paul Ferkul

Abstract A numerical study is pursued to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. This is done in support of upcoming microgravity experiments aboard the International Space Station. For the numerical study, a three-dimensional transient Computational Fluid Dynamics combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has competing effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned non-monotonic trend of flame spread rate as duct height varies. This work relates to upcoming microgravity experiments, in which flat thin samples will be burned in a low-speed concurrent flow using a small flow duct aboard the International Space Station. Two baffles will be installed parallel to the fuel sample (one on each side of the sample) to create an effective reduction in the height of the flow duct. The concept and setup of the experiments are presented in this work.


2016 ◽  
Vol 87 (9) ◽  
pp. 093505 ◽  
Author(s):  
M. Y. Pustylnik ◽  
M. A. Fink ◽  
V. Nosenko ◽  
T. Antonova ◽  
T. Hagl ◽  
...  

Author(s):  
Andrey M LIPAEV ◽  
Andrey V. ZOBNIN ◽  
Aleksandr D. USACHEV ◽  
Vladimir I MOLOTKOV ◽  
Dmitriy I. ZHUKHOVITSKIY ◽  
...  

The scientific equipment «Plasmakrystall–4» («PK–4») is designed to study complex (dusty) plasma under microgravity conditions aboard the International Space Station (ISS) and is a joint project of the European Space Agency (ESA) and Roscosmos. Scientific equipment «PK–4» is integrated into «European physiological modules» (EPM) rack, in the European laboratory module Columbus. Experiment control — automated, software-interactive, or manual from an on-board laptop and/or from a terminal in the ground control center. A low-pressure direct current discharge in noble gases in a glass tube is used to create a plasma at scientific equipment «PK–4». Microparticles of a given size are injected into the discharge to obtain a complex plasma. Two digital video cameras allow to trace individual microparticles inside the tube in phase space, which makes a complex plasma to be a good model for studying classical phenomena in condensed matter at the kinetic level. To monitor the plasma conditions, an integrated spectrometer and another video camera are used allowing to observe the plasma's own emission at different wavelengths. To study the reaction of microparticles to external forces, they can be exposed to radiation from a powerful laser, a gas stream, and also to thermophoretic force, i.e., by producing a given temperature gradient. Key words: complex plasmas, microparticles, soft matter, laser manipulation, microgravity, viscosity measurements, gas discharges, plasma diagnostics.


1998 ◽  
Vol 551 ◽  
Author(s):  
R. A. Herring ◽  
B. Tryggvason

AbstractRecent experimental measurements of various microgravity experiments have been taken on the Mir and Space Shuttle under different conditions of microgravity using the Microgravity-vibration Isolation Mount (MIM). The results to date show a clear difference when the experimental measurements are taken from g-levels offered by the Mir and the Space Shuttle (non isolated) to g-levels offered by MIM (isolated) which have been reduced by two orders of magnitude. Concern for the International Space Station (ISS) experimental facilities arises when the quality of microgravity on the Mir and Space Shuttle (non isolated), which is believed to be not good enough, has been measured to be better than the ISS Requirement established by NASA for isolated racks, which will be significantly better than those racks not isolated.


Sign in / Sign up

Export Citation Format

Share Document