scholarly journals On the use of solid–shell elements for thin structures: Application to impact and sheet metal forming simulations

2016 ◽  
Author(s):  
Peng Wang ◽  
Hocine Chalal ◽  
Farid Abed-Meraim
2015 ◽  
Vol 651-653 ◽  
pp. 344-349 ◽  
Author(s):  
Peng Wang ◽  
Hocine Chalal ◽  
Farid Abed-Meraim

Thin structures are commonly designed and employed in engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural components has become a powerful and useful tool in this field. For the last few decades, much attention and effort have been paid to establish accurate and efficient FE. In this regard, the solid–shell concept proved to be very attractive due to its multiple advantages. Several treatments are additionally applied to the formulation of solid–shell elements to avoid all locking phenomena and to guarantee the accuracy and efficiency during the simulation of thin structures. The current contribution presents a family of prismatic and hexahedral assumed-strain based solid–shell elements, in which an arbitrary number of integration points are distributed along the thickness direction. Both linear and quadratic formulations of the solid–shell family elements are implemented into ABAQUS static/implicit and dynamic/explicit software to model thin 3D problems with only a single layer through the thickness. Two popular benchmark tests are first conducted, in both static and dynamic analyses, for validation purposes. Then, attention is focused on a complex sheet metal forming process involving large strain, plasticity and contact.


2017 ◽  
Vol 34 (5) ◽  
pp. 1413-1445 ◽  
Author(s):  
Peng Wang ◽  
Hocine Chalal ◽  
Farid Abed-Meraim

Purpose The purpose of this paper is to propose two linear solid-shell finite elements, a six-node prismatic element denoted SHB6-EXP and an eight-node hexahedral element denoted SHB8PS-EXP, for the three-dimensional modeling of thin structures in the context of explicit dynamic analysis. Design/methodology/approach These two linear solid-shell elements are formulated based on a purely three-dimensional (3D) approach, with displacements as the only degrees of freedom. To prevent various locking phenomena, a reduced-integration scheme is used along with the assumed-strain method. The resulting formulations are computationally efficient, as only a single layer of elements with an arbitrary number of through-thickness integration points is required to model 3D thin structures. Findings Via the VUEL user-element subroutines, the performance of these elements is assessed through a set of selective and representative dynamic elastoplastic benchmark tests, impact-type problems and deep drawing processes involving complex non-linear loading paths, anisotropic plasticity and double-sided contact. The obtained numerical results demonstrate good performance of the SHB-EXP elements in the modeling of 3D thin structures, with only a single element layer and few integration points in the thickness direction. Originality/value The extension of the SHB-EXP solid-shell formulations to large-strain anisotropic plasticity enlarges their application range to a wide variety of dynamic elastoplastic problems and sheet metal forming simulations. All simulation results reveal that the numerical strategy adopted in this paper can efficiently prevent the various locking phenomena that commonly occur in the 3D modeling of thin structural problems.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Qiao-Min Li ◽  
Zhao-Wei Yi ◽  
Yu-Qi Liu ◽  
Xue-Feng Tang ◽  
Wei Jiang ◽  
...  

To simulate sheet metal forming processes precisely, an in-house dynamic explicit code was developed to apply a new solid-shell element to sheet metal forming analyses, with a corotational coordinate system utilized to simplify the nonlinearity and to integrate the element with anisotropic constitutive laws. The enhancing parameter of the solid-shell element, implemented to circumvent the volumetric and thickness locking phenomena, was condensed into an explicit form. To avoid the rank deficiency, a modified physical stabilization involving the B-bar method and reconstruction of transverse shear components was adopted. For computational efficiency of the solid-shell element in numerical applications, an adaptive mesh subdivision scheme was developed, with element geometry and contact condition taken as subdivision criteria. To accurately capture the anisotropic behavior of sheet metals, material models with three different anisotropic yield functions were incorporated. Several numerical examples were carried out to validate the accuracy of the proposed element and the efficiency of the adaptive mesh subdivision.


Sign in / Sign up

Export Citation Format

Share Document